Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 61(4): 2430-2445, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37889366

RESUMEN

The ability of monkeys and rats to carry out spatial working memory tasks has been shown to depend on the persistent firing of pyramidal cells in the prefrontal cortex (PFC), arising from recurrent excitatory connections on dendritic spines. These spines express hyperpolarization-activated cyclic nucleotide-gated (HCN) channels whose open state is increased by cAMP signaling, and which markedly alter PFC network connectivity and neuronal firing. In traditional neural circuits, activation of these non-selective cation channels leads to neuronal depolarization and increased firing rate. Paradoxically, cAMP activation of HCN channels in PFC pyramidal cells reduces working memory-related neuronal firing. This suggests that activation of HCN channels may hyperpolarize rather than depolarize these neurons. The current study tested the hypothesis that Na+ influx through HCN channels activates Slack Na+-activated K+ (KNa) channels to hyperpolarize the membrane. We have found that HCN and Slack KNa channels co-immunoprecipitate in cortical extracts and that, by immunoelectron microscopy, they colocalize at postsynaptic spines of PFC pyramidal neurons. A specific blocker of HCN channels, ZD7288, reduces KNa current in pyramidal cells that express both HCN and Slack channels, but has no effect on KNa currents in an HEK cell line expressing Slack without HCN channels, indicating that blockade of HCN channels in neurons reduces K+ current indirectly by lowering Na+ influx. Activation of HCN channels by cAMP in a cell line expressing a Ca2+ reporter results in elevation of cytoplasmic Ca2+, but the effect of cAMP is reversed if the HCN channels are co-expressed with Slack channels. Finally, we used a novel pharmacological blocker of Slack channels to show that inhibition of Slack in rat PFC improves working memory performance, an effect previously demonstrated for blockers of HCN channels. Our results suggest that the regulation of working memory by HCN channels in PFC pyramidal neurons is mediated by an HCN-Slack channel complex that links activation HCN channels to suppression of neuronal excitability.


Asunto(s)
Memoria a Corto Plazo , Células Piramidales , Animales , Ratas , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Memoria a Corto Plazo/fisiología , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo
2.
Res Sq ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37205397

RESUMEN

The ability of monkeys and rats to carry out spatial working memory tasks has been shown to depend on the persistent firing of pyramidal cells in the prefrontal cortex (PFC), arising from recurrent excitatory connections on dendritic spines. These spines express hyperpolarization-activated cyclic nucleotide-gated (HCN) channels whose open state is increased by cAMP signaling, and which markedly alter PFC network connectivity and neuronal firing. In traditional neural circuits, activation of these non-selective cation channels leads to neuronal depolarization and increased firing rate. Paradoxically, cAMP activation of HCN channels in PFC pyramidal cells reduces working memory-related neuronal firing. This suggests that activation of HCN channels may hyperpolarize rather than depolarize these neurons. The current study tested the hypothesis that Na+ influx through HCN channels activates Slack Na+-activated K+ (KNa) channels to hyperpolarize the membrane. We have found that HCN and Slack KNa channels coimmunoprecipitate in cortical extracts and that, by immunoelectron microscopy, they colocalize at postsynaptic spines of PFC pyramidal neurons. A specific blocker of HCN channels, ZD7288, reduces KNa current in pyramidal cells that express both HCN and Slack channels, but has no effect on KNa currents in an HEK cell line expressing Slack without HCN channels, indicating that blockade of HCN channels in neurons reduces K+ +current indirectly by lowering Na+ influx. Activation of HCN channels by cAMP in a cell line expressing a Ca2+ reporter results in elevation of cytoplasmic Ca2+, but the effect of cAMP is reversed if the HCN channels are co-expressed with Slack channels. Finally, we used a novel pharmacological blocker of Slack channels to show that inhibition of Slack in rat PFC improves working memory performance, an effect previously demonstrated for blockers of HCN channels. Our results suggest that the regulation of working memory by HCN channels in PFC pyramidal neurons is mediated by an HCN-Slack channel complex that links activation HCN channels to suppression of neuronal excitability.

3.
J Neuromuscul Dis ; 10(2): 173-184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36373291

RESUMEN

BACKGROUND: Telemedicine (TM) contributes to bridge the gap between healthcare facilities and patients' homes with neuromuscular disease (NMD) because of mobility issues. However, its deployment is limited due to difficulties evaluating subtle neurological signs such as mild weakness or sensory deficits. The COVID-19 pandemic has disrupted healthcare delivery worldwide, necessitating rapid measures implementation by health care providers (HCPs) to protect patients from acquiring SARS-CoV-2 while maintaining the best care and treatment. OBJECTIVES: Given the challenges faced by remote healthcare assistance of NMD patients, we aim to evaluate the use of TM in NMD during the COVID-19 pandemic. METHODS: Based on the Model for Assessment-of-Telemedicine-Applications (MAST), we conducted a survey amongst clinicians of the ERN EURO NMD (European-Reference-Network-for-Rare-Neuromuscular-Diseases). RESULTS: Based on 42 responses over 76 expected ones, our results show that the COVID-19 pandemic significantly increased the number of HCPs using TM (from 60% to 100%). The TM types most used during the COVID-19 period are teleconsultation and consultation by phone, particularly in the context of symptoms worsening in NMD patients with COVID-19 infection. Most European HCPs were satisfied when using TM but as a complementary option to physical consultations. Many responses addressed the issue of technical aspects needing improvement, particularly for elderly patients who need caregivers' assistance for accessing the TM platform. CONCLUSIONS: TM has been essential during COVID-19, but its use still presents some limitations for NMD patients with cognitive deficits or for first-time diagnosis. Thus, TM should be used as complement to, rather than substitute, for face-to-face consultations.


Asunto(s)
COVID-19 , Enfermedades Neuromusculares , Telemedicina , Humanos , Anciano , SARS-CoV-2 , Pandemias , Telemedicina/métodos
4.
Neuron ; 109(6): 938-946.e5, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33508244

RESUMEN

Since their discovery decades ago, the primary physiological and pathological effects of potassium channels have been attributed to their ion conductance, which sets membrane potential and repolarizes action potentials. For example, Kv3 family channels regulate neurotransmitter release by repolarizing action potentials. Here we report a surprising but crucial function independent of potassium conductance: by organizing the F-actin cytoskeleton in mouse nerve terminals, the Kv3.3 protein facilitates slow endocytosis, rapid endocytosis, vesicle mobilization to the readily releasable pool, and recovery of synaptic depression during repetitive firing. A channel mutation that causes spinocerebellar ataxia inhibits endocytosis, vesicle mobilization, and synaptic transmission during repetitive firing by disrupting the ability of the channel to nucleate F-actin. These results unmask novel functions of potassium channels in endocytosis and vesicle mobilization crucial for sustaining synaptic transmission during repetitive firing. Potassium channel mutations that impair these "non-conducting" functions may thus contribute to generation of diverse neurological disorders.


Asunto(s)
Endocitosis/fisiología , Canales de Potasio Shaw/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Actinas/metabolismo , Animales , Células CHO , Cricetulus , Ratones , Mutación , Terminales Presinápticos/metabolismo , Canales de Potasio Shaw/genética
5.
Neurobiol Stress ; 11: 100187, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31832507

RESUMEN

The prefrontal cortex (PFC) mediates higher cognition but is impaired by stress exposure when high levels of catecholamines activate calcium-cAMP-protein kinase A (PKA) signaling. The current study examined whether stress and increased cAMP-PKA signaling in rat medial PFC (mPFC) reduce pyramidal cell firing and impair working memory by activating KCNQ potassium channels. KCNQ2 channels were found in mPFC layers II/III and V pyramidal cells, and patch-clamp recordings demonstrated KCNQ currents that were increased by forskolin or by chronic stress exposure, and which were associated with reduced neuronal firing. Low dose of KCNQ blockers infused into rat mPFC improved cognitive performance and prevented acute pharmacological stress-induced deficits. Systemic administration of low doses of KCNQ blocker also improved performance in young and aged rats, but higher doses impaired performance and occasionally induced seizures. Taken together, these data demonstrate that KCNQ channels have powerful influences on mPFC neuronal firing and cognitive function, contributing to stress-induced PFC dysfunction.

6.
J Neurosci ; 39(24): 4797-4813, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-30936239

RESUMEN

Fragile X syndrome (FXS) is characterized by hypersensitivity to sensory stimuli, including environmental sounds. We compared the auditory brainstem response (ABR) recorded in vivo in mice lacking the gene (Fmr1-/y ) for fragile X mental retardation protein (FMRP) with that in wild-type animals. We found that ABR wave I, which represents input from the auditory nerve, is reduced in Fmr1-/y animals, but only at high sound levels. In contrast, wave IV, which represents the activity of auditory brainstem nuclei is enhanced at all sound levels, suggesting that loss of FMRP alters the central processing of auditory signals. Current-clamp recordings of neurons in the medial nucleus of the trapezoid body in the auditory brainstem revealed that, in contrast to neurons from wild-type animals, sustained depolarization triggers repetitive firing rather than a single action potential. In voltage-clamp recordings, K+ currents that activate at positive potentials ("high-threshold" K+ currents), which are required for high-frequency firing and are carried primarily by Kv3.1 channels, are elevated in Fmr1-/y mice, while K+ currents that activate near the resting potential and inhibit repetitive firing are reduced. We therefore tested the effects of AUT2 [((4-({5-[(4R)-4-ethyl-2,5-dioxo-1-imidazolidinyl]-2-pyridinyl}oxy)-2-(1-methylethyl) benzonitrile], a compound that modulates Kv3.1 channels. AUT2 reduced the high-threshold K+ current and increased the low-threshold K+ currents in neurons from Fmr1-/y animals by shifting the activation of the high-threshold current to more negative potentials. This reduced the firing rate and, in vivo, restored wave IV of the ABR. Our results from animals of both sexes suggest that the modulation of the Kv3.1 channel may have potential for the treatment of sensory hypersensitivity in patients with FXS.SIGNIFICANCE STATEMENT mRNA encoding the Kv3.1 potassium channel was one of the first described targets of the fragile X mental retardation protein (FMRP). Fragile X syndrome is caused by loss of FMRP and, in humans and mice, causes hypersensitivity to auditory stimuli. We found that components of the auditory brain response (ABR) corresponding to auditory brainstem activity are enhanced in mice lacking FMRP. This is accompanied by hyperexcitability and altered potassium currents in auditory brainstem neurons. Treatment with a drug that alters the voltage dependence of Kv3.1 channels normalizes the imbalance of potassium currents, as well as ABR responses in vivo, suggesting that such compounds may be effective in treating some symptoms of fragile X syndrome.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Canales de Potasio Shaw/metabolismo , Animales , Vías Auditivas , Percepción Auditiva , Tronco Encefálico/efectos de los fármacos , Núcleo Coclear/fisiología , Fenómenos Electrofisiológicos , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Femenino , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Hidantoínas/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Piridinas/farmacología
7.
J Neurophysiol ; 116(1): 106-21, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27052580

RESUMEN

Many rapidly firing neurons, including those in the medial nucleus of the trapezoid body (MNTB) in the auditory brain stem, express "high threshold" voltage-gated Kv3.1 potassium channels that activate only at positive potentials and are required for stimuli to generate rapid trains of actions potentials. We now describe the actions of two imidazolidinedione derivatives, AUT1 and AUT2, which modulate Kv3.1 channels. Using Chinese hamster ovary cells stably expressing rat Kv3.1 channels, we found that lower concentrations of these compounds shift the voltage of activation of Kv3.1 currents toward negative potentials, increasing currents evoked by depolarization from typical neuronal resting potentials. Single-channel recordings also showed that AUT1 shifted the open probability of Kv3.1 to more negative potentials. Higher concentrations of AUT2 also shifted inactivation to negative potentials. The effects of lower and higher concentrations could be mimicked in numerical simulations by increasing rates of activation and inactivation respectively, with no change in intrinsic voltage dependence. In brain slice recordings of mouse MNTB neurons, both AUT1 and AUT2 modulated firing rate at high rates of stimulation, a result predicted by numerical simulations. Our results suggest that pharmaceutical modulation of Kv3.1 currents represents a novel avenue for manipulation of neuronal excitability and has the potential for therapeutic benefit in the treatment of hearing disorders.


Asunto(s)
Tronco Encefálico/efectos de los fármacos , Hidantoínas/farmacología , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Piridinas/farmacología , Canales de Potasio Shaw/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Tronco Encefálico/fisiología , Células CHO , Simulación por Computador , Cricetulus , Hidantoínas/química , Ratones Endogámicos C57BL , Modelos Moleculares , Modelos Neurológicos , Estructura Molecular , Neuronas/fisiología , Neurotransmisores/química , Técnicas de Placa-Clamp , Piridinas/química , Ratas , Canales de Potasio Shaw/genética , Técnicas de Cultivo de Tejidos
8.
Cell ; 165(2): 434-448, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26997484

RESUMEN

Mutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.3 contains a proline-rich domain conserved in proteins that activate actin nucleation through Arp2/3. We found that Kv3.3 recruits Arp2/3 to the plasma membrane, resulting in formation of a relatively stable cortical actin filament network resistant to cytochalasin D that inhibits fast barbed end actin assembly. These Kv3.3-associated actin structures are required to prevent very rapid N-type channel inactivation during short depolarizations of the plasma membrane. The effects of Kv3.3 on the actin cytoskeleton are mediated by the binding of the cytoplasmic C terminus of Kv3.3 to Hax-1, an anti-apoptotic protein that regulates actin nucleation through Arp2/3. A human Kv3.3 mutation within a conserved proline-rich domain produces channels that bind Hax-1 but are impaired in recruiting Arp2/3 to the plasma membrane, resulting in growth cones with deficient actin veils in stem cell-derived neurons.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Canales de Potasio Shaw/metabolismo , Ataxias Espinocerebelosas/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Datos de Secuencia Molecular , Mutación , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Canales de Potasio Shaw/química , Canales de Potasio Shaw/genética , Transducción de Señal , Proteínas de Unión al GTP rac/metabolismo
9.
Biol Psychiatry ; 76(6): 476-85, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24560582

RESUMEN

BACKGROUND: Disrupted in schizophrenia 1 (DISC1) is a protein implicated in schizophrenia, bipolar disorder, major depressive disorder, and autism. To date, most of research examining DISC1 function has focused on its role in neurodevelopment, despite its presence throughout life. DISC1 also regulates cyclic adenosine monophosphate (cAMP) signaling by increasing type 4 phosphodiesterase catabolism of cAMP when cAMP concentrations are high. In this study, we tested the hypothesis that DISC1, through its regulation of cAMP, modulates I-SK and I-TRPC channel-mediated ionic currents that we have shown previously to regulate the activity of mature prefrontal cortical pyramidal neurons. METHODS: We used patch-clamp recordings in prefrontal cortical slices from adult rats in which DISC1 function was reduced in vivo by short hairpin RNA viral knockdown or in vitro by dialysis of DISC1 antibodies. RESULTS: We found that DISC1 disruption resulted in an increase of metabotropic glutamate receptor-induced intracellular calcium (Ca2+) waves, small-conductance K+ (SK)-mediated hyperpolarization and a decrease of transient receptor potential C (TRPC)-mediated sustained depolarization. Consistent with a role for DISC1 in regulation of cAMP signaling, forskolin-induced cAMP production also increased intracellular Ca2+ waves, I-SK and decreased I-TRPC. Lastly, inhibiting cAMP generation with guanfacine, an α2A-noradrenergic agonist, normalized the function of SK and TRPC channels. CONCLUSIONS: Based on our findings, we propose that diminished DISC1 function, such as occurs in some mental disorders, can lead to the disruption of normal patterns of prefrontal cortex activity through the loss of cAMP regulation of metabotropic glutamate receptor-mediated intracellular Ca2+ waves, SK and TRPC channel activity.


Asunto(s)
AMP Cíclico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Corteza Prefrontal/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Señalización del Calcio , Masculino , Potenciales de la Membrana , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal
10.
J Physiol ; 589(Pt 13): 3211-29, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21576272

RESUMEN

Group I metabotropic glutamate receptors (mGluRs) play an essential role in cognitive function. Their activation results in a wide array of cellular and molecular responses that are mediated by multiple signalling cascades. In this study, we focused on Group I mGluR activation of IP3R-mediated intracellular Ca2+ waves and their role in activating Ca2+-dependent ion channels in CA1 pyramidal neurons. Using whole-cell patch-clamp recordings and high-speed Ca2+ fluorescence imaging in acute hippocampal brain slices, we show that synaptic and pharmacological stimulation of mGluRs triggers intracellular Ca2+ waves and a biphasic electrical response composed of a transient Ca2+-dependent SK channel-mediated hyperpolarization and a TRPC-mediated sustained depolarization. The generation and magnitude of the SK channel-mediated hyperpolarization depended solely on the rise in intracellular Ca2+ concentration ([Ca2+]i), whereas the TRPC channel-mediated depolarization required both a small rise in [Ca2+]i and mGluR activation. Furthermore, the TRPC-mediated current was suppressed by forskolin-induced rises in cAMP. We also show that SK- and TRPC-mediated currents robustly modulate pyramidal neuron excitability by decreasing and increasing their firing frequency, respectively. These findings provide additional evidence that mGluR-mediated synaptic transmission makes an important contribution to regulating the output of hippocampal neurons through intracellular Ca2+ wave activation of SK and TRPC channels. cAMP provides an additional level of regulation by modulating TRPC-mediated sustained depolarization that we propose to be important for stabilizing periods of sustained firing.


Asunto(s)
Región CA1 Hipocampal/fisiología , Señalización del Calcio/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Canales Catiónicos TRPC/fisiología , Potenciales de Acción/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
11.
Epilepsia ; 48 Suppl 5: 131-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17910593

RESUMEN

Temporal Lobe Epilepsy (TLE) is often preceded by a latent (seizure-free) period during which complex network reorganizations occur. In experimental epilepsy, network hyperexcitability is already present during the latent period, suggesting a modification of information processing. The purpose of this study was to assess the input/output relationship in the hippocampal CA1 region during epileptogenesis. Field recordings in strata pyramidale and radiatum were used to measure the output of CA1 pyramidal cells as a function of the synaptic inputs they receive following the stimulation of Shaffer collaterals in slices obtained from sham and pilocarpine-treated animals during the latent and chronic periods. We show that there is a transient increase of the input and output field responses during the latent period as compared to sham and epileptic animals. The coupling between excitatory inputs and cell firing was also increased during the latent period. This increase persisted in epileptic animals, although to a lesser extent. We also confirm that paired-pulse facilitation occurs before the chronic phase. The present data further support the view that hyperexcitability is present at an early stage of epileptogenesis. Network output is more facilitated during the latent than during the chronic period. Hyperexcitability may participate to epileptogenesis, but it is not sufficient in itself to produce seizures.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Potenciales de Acción/fisiología , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica , Electrodos Implantados , Electrofisiología , Epilepsia/inducido químicamente , Epilepsia/fisiopatología , Hipocampo/fisiopatología , Masculino , Modelos Neurológicos , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Pilocarpina , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología
12.
J Physiol ; 578(Pt 1): 193-211, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17008374

RESUMEN

An increased ratio of the glutamatergic drive to the overall glutamatergic/GABAergic drive characterizes the chronic stage of temporal lobe epilepsy (TLE), but it is unclear whether this modification is present during the latent period that often precedes the epileptic stage. Using the pilocarpine model of TLE in rats, we report that this ratio is decreased in hippocampal CA1 pyramidal cells during the early phase of the latent period (3-5 days post pilocarpine). It is, however, increased during the late phase of the latent period (7-10 days post pilocarpine), via cell domain-dependent alterations in synaptic current properties, concomitant with the occurrence of interictal-like activity in vivo. During the late latent period, the glutamatergic drive was increased in somata via an enhancement in EPSC decay time constant and in dendrites via an increase in EPSC frequency and amplitude. The GABAergic drive remained unchanged in the soma but was decreased in dendrites, since the drop off in IPSC frequency was more marked than the increase in IPSC kinetics. Theoretical considerations suggest that these modifications are sufficient to produce interictal-like activity. In epileptic animals, the ratio of the glutamatergic drive to the overall synaptic drive was not further modified, despite additional changes in synaptic current frequency and kinetics. These results show that the global changes to more glutamatergic and less GABAergic activities in the CA1 region precede the chronic stage of epilepsy, possibly facilitating the occurrence and/or the propagation of interictal activity.


Asunto(s)
Epilepsia/fisiopatología , Glutamatos/fisiología , Hipocampo/fisiopatología , Ácido gamma-Aminobutírico/fisiología , Algoritmos , Animales , Dendritas/fisiología , Electrodos Implantados , Electroencefalografía/efectos de los fármacos , Electrofisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Agonistas Muscarínicos/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/ultraestructura , Pilocarpina/farmacología , Células Piramidales/fisiopatología , Ratas , Ratas Wistar , Sinapsis/fisiología , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA