Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(16): e202319856, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354272

RESUMEN

C-C linked glutarimide-containing structures with direct utility in the preparation of cereblon-based degraders (PROTACs, CELMoDs) can be assessed in a single step from inexpensive, commercial α-bromoglutarimide through a unique Brønsted-acid assisted Ni-electrocatalytic approach. The reaction tolerates a broad array of functional groups that are historically problematic and can be applied to the simplified synthesis of dozens of known compounds that have only been procured through laborious, wasteful, multi-step sequences. The reaction is scalable in both batch and flow and features a trivial procedure wherein the most time-consuming aspect of reaction setup is weighing out the starting materials.


Asunto(s)
Níquel , Níquel/química , Catálisis , Oxidación-Reducción
2.
Angew Chem Int Ed Engl ; 63(2): e202311557, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37984444

RESUMEN

Over the last fifty years, the use of nickel catalysts for facilitating organic transformations has skyrocketed. Nickel(0) sources act as useful precatalysts because they can enter a catalytic cycle through ligand exchange, without needing to undergo additional elementary steps. However, most Ni(0) precatalysts are synthesized with stoichiometric aluminum-hydride reductants, pyrophoric reagents that are not atom-economical and must be used at cryogenic temperatures. Here, we demonstrate that Ni(II) salts can be reduced on preparative scale using electrolysis to yield a variety of Ni(0) and Ni(II) complexes that are widely used as precatalysts in organic synthesis, including bis(1,5-cyclooctadiene)nickel(0) [Ni(COD)2 ]. This method overcomes the reproducibility issues of previously reported methods by standardizing the procedure, such that it can be performed anywhere in a robust manner. It can be transitioned to large scale through an electrochemical recirculating flow process and extended to an in situ reduction protocol to generate catalytic amounts of Ni(0) for organic transformations. We anticipate that this work will accelerate adoption of preparative electrochemistry for the synthesis of low-valent organometallic complexes in academia and industry.

3.
ACS Med Chem Lett ; 13(9): 1413-1420, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36105339

RESUMEN

Carboxylic acids, the most versatile and ubiquitous diversity input used in medicinal chemistry for canonical polar bond constructions such as amide synthesis, can now be employed in a fundamentally different category of reaction to make C-C bonds by harnessing the power of radicals. This outlook serves as a user-guide to aid practitioners in both the design of syntheses that leverage the simplifying power of this disconnection and the precise tactics that can be employed to enable them. Taken together, this emerging area holds the potential to rapidly accelerate access to chemical space of value to modern medicinal chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...