Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e28622, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38689963

RESUMEN

To eliminate the hazardous pesticide 2,4-dichlorophenylacetic acid (2,4-D) through aqueous solutions, stacked nanorods known as hetero bimetallic organic frameworks (MOFs) of 2-methyl imidazole based on lanthanum and zinc are created. The research's convincing discoveries displayed that La/Zn-MOF is an actual adsorbent for the removal of 2,4-D through aqueous solutions. The La/Zn-MOF was investigated using a variability of techniques, with scanning electron microscope (SEM), powered X-ray diffraction (PXRD), and Brunauer-Emmett-Teller (BET) investigation. La/Zn-MOF has a significant pore capacity of 1.04 cm³/g and a comparatively large surface area of 897.69 m2/g. Our findings, which are quite intriguing, demonstrate that adsorption behavior is pointedly wedged by variations in pH. A pH 6 dose of 0.02 g was shown to be the optimal setting for the greatest capacity for adsorption. Because adsorption is an endothermic process, temperature variations affect its capability. The adsorption method was fit both isothermally and kinetically using the Langmuir isotherm classical. It was created that the entire process made use of a chemisorption mechanism. Solution pH, temperature, adsorbent dosage, and time were all improved using the Box-Behnken design (BBD) and Response Surface Methodology (RSM). We were able to accurately calculate the values of ΔHo, ΔSo, and ΔGo for 2,4-D by following the guidelines. These results demonstrated the spontaneous and endothermic character of the adsorption procedure employing La/Zn-MOF as an adsorbent. Adsorption-desorption cycles can be carried out up to five times. With the synthesized La/Zn-MOF adsorbent due to its exceptional reusability. Many processes, such π-π interaction, pore filling, H-bonding, or electrostatic contact, were postulated to explain the connection between La/Zn-MOF and 2,4-D after extra research to appreciate well the link was conducted. This is the first study to demonstrate the effectiveness of utilizing La/Zn-MOF as an adsorbent to eliminate 2,4-D from wastewater models. The results display that a pH of 6 is required to achieve the maximal 2,4-D adsorption capability on La/Zn-MOF, which is 307.5 mg/g.

2.
Heliyon ; 10(7): e28573, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38571594

RESUMEN

The present work aims to synthesize four series of phenothiazine incorporation Mannich bases. Therefore, 10-methyl-10H-phenothiazine-3-sulfonamide (4) which was subjected to react with some secondary amines and formaldehyde to give the Mannich bases 5a-f, and 6-13. Compound 13 was then subjected to react with some secondary amines and formaldehyde to give the corresponding Mannich bases 14a-f. In total, twenty-two new compounds were synthesized and evaluated for in vitro growth inhibition activity against P. aeruginosa, E. coli, and S. aureus. Among the tested compounds, compounds 3, 5a, 5c, 6, 12, 13, 14d, and 14e exhibited good activity with a MIC value (12.5 µg/mL), compounds 5b, 10, 11, 14a, and 14c exhibited strong activity against the growth of S. aureus with a MIC value (6.25 µg/mL), and compound 14b superior against S. aureus with a MIC value (3.125 µg/mL) compared to drug reference ciprofloxacin with MIC value (2 µg/mL). The molecular docking investigation revealed the presence of many derivatives with high binding affinities and distinct interaction patterns with the target protein. Derivatives 14a-e emerged as the most promising possibilities, displaying the greatest binding energies and a varied variety of interaction types, including hydrogen bonding and pi interactions, over different distances, with derivative 14b exhibiting the highest binding energy at S = -8.3093 kcal/mol. These derivatives displayed superior binding affinities and various interaction mechanisms with the target protein, suggesting that they have great promise as lead compounds for future development into therapeutic medicines.

3.
ACS Omega ; 9(11): 13458-13468, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38524465

RESUMEN

The present study introduced a novel disposable screen-printed carbon electrodes (SPCEs) modified with copper oxide/zeolite nanostructures for eco-friendly selective differential pulse voltammetric quantification of tetrahydrozoline (THZ) in eyedrop samples and biological fluids. Modification of the electrode matrix with copper oxide nanoparticles/zeolite nanostructures (CuONPs/ZY) with their effective and synergistic electrocatalytic activity enhanced the electrode performance against electrooxidation of THZ at 0.960 V in BR at pH 9.0 with a diffusion-controlled reaction mechanism. The tentative oxidation mechanism based on molecular orbital calculations postulates the oxidation of THZ molecules through oxidation of a nitrogen atom five-membered ring and the participation of two electrons/protons in the electrode reaction. Linear calibration curves were illustrated within a wide THZ concentration range from 0.24 to 57.2 µg mL-1 recording a limit of detection (LOD) value of 0.0799 µg mL-1. The CuONPs/ZY/SPEs exhibited improved performance compared with the sole reported THZ sensor-based gold film-plated carbon paste electrodes, in addition to their high reproducibility of fabrication and measurement and prolonged shelf lifetime. Tetrahydrozoline was successfully assayed in the presence of excipients, degradation products, and chloramphenicol. The presented voltammetric sensor can be considered as an eco-friendly and reliable analytical approach for monitoring THZ residues in eye drop samples and biological fluids with high recovery compared with the official pharmacopeial analytical protocol. The presented sensors were assessed according to an EcoScale tool and also compared with the reported THZ sensor.

4.
RSC Adv ; 14(9): 5875-5892, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38362066

RESUMEN

This study investigated the efficacy of magnetic Sn metal-organic frameworks (MSn-MOFs) in removing the insecticide amoxicillin (AMX) from aqueous solutions. Our thorough experimental investigation showed that MSn-MOFs were an incredibly effective adsorbent for removing AMX. Several methods were used to characterize the material. BET investigation of the data displayed a significant surface area of 880 m2 g-1 and a strong magnetic force of 89.26 emu g-1. To identify the point of zero charge, surface characterization was carried out and the value was 7.5. This shows that the adsorbent carries a positive and negative charge below and above this position, respectively. Moreover, the impact of pH on adsorption equilibrium was explored. The results of kinetic models to explore the adsorption of AMX on MSn-MOFs supported the pseudo-second-order, and the adsorption complied well with the Langmuir isotherm. The results revealed that the overall adsorption mechanism may entail chemisorption via an endothermic spontaneous process with MSn-MOFs. The precise modes by which MSn-MOFs and AMX interacted may involve pore filling, H-bonding, π-π interaction, or electrostatic interaction. Determining the nature of this interaction is essential in understanding the adsorption behavior of the MOFs and optimize the adsorbent design for real-world applications. The use of the MSn-MOF adsorbent provides a straightforward yet efficient method for the filtration of water and treatment of industrial effluents. The results showed 2.75 mmol g-1 as the maximum capacity for adsorption at pH = 6. Additional tests were conducted to assess the adsorbent regeneration, and even after more than six cycles, the results demonstrated a high level of efficiency. The adsorption results were enhanced by the application of the Box-Behnken design.

6.
Saudi Pharm J ; 32(3): 101962, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38318318

RESUMEN

Background: Tetrazole-based derivatives and their electronic structures have displayed interesting antimicrobial activity. Methods: The tetrazole-based hybrids linked with thiazole, thiophene and thiadiazole ring systems have been synthesized through various chemical reactions. The computational method DFT/B3LYP has been utilized to calculate their electronic properties. The antimicrobial effectiveness was investigated against representative bacterial and fungal strains. Additionally, the synthesized derivatives binding interaction was stimulated by docking program against PDB ID: 4URO as a model of the ATP binding domain of S. aureus DNA Gyrase subunit B. Results: The structures of the synthesized tetrazole-based derivatives were confirmed by IR, NMR, and Mass spectroscopic data. The DFT/B3LYP method showed that the thiadiazole derivatives 9a-c had lower ΔEH-L than the thiophenes 7a-c and thiazoles 5a-c. The hybrids 5b, 5c, and 7b exhibited proper antibacterial activity against Gram's +ve bacterial strains (S. aureus and S. pneumonia), while 9a displayed potent activity towards Gram's -ve bacterial strains (S. typhimurium and E. coli). Meanwhile, derivatives 5a-b, 7a, 7c, and 9c showed good effectiveness towards fungal strain (C. albicans). Conclusion: The study provides valuable tetrazole core-linked heterocyclic rings and opens the door to further research on their electrical characteristics and applications. Tetrazoles and thiazoles have antibacterial properties in pharmacological frameworks, making these hybrids potential lead molecules for drug development. The conclusion summarizes the data and suggests that the synthesized chemicals' interaction with a particular protein domain suggests focused biological activity.

7.
ACS Omega ; 9(5): 5386-5394, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343948

RESUMEN

The present study described the construction and the electrochemical futures of a novel inject-printed electrochemical sensor based on spinel ferrite-doped manganese oxide nanoparticles (FMnONPs) for the sensitive differential pulse voltammetric quantification of brimonidine (BRIM) in ophthalmic solutions. At the optimized electroanalytical parameters, calibration graphs were linear within the BRIM concentration range of 24-3512 ng mL-1 and recorded a detection limit value of 8.21 ng mL-1. Cyclic voltammograms recorded at different scan rates indicated an adsorption-reaction mechanism for the electrooxidation of BRIM at the electrode surface with the involvement of two electrons and one proton based on the oxidation of the five-membered ring nitrogen atom as recommended by the molecular orbital calculations. The enhanced performance of the introduced inkjet-printed sensors integrated with FMnONPs encourages their application for monitoring BRIM residues in ophthalmic solutions and biological fluids in the presence of BRIM degradation products and other interferents for diverse quality control applications.

8.
Int J Biol Macromol ; 259(Pt 2): 129282, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199550

RESUMEN

The objective of this research was to develop a novel adsorbent to eliminate mercury (Hg(II)) from water. A unique citrate-crosslinked La-MOF/citrate crosslinked chitosan composite sponge (La-MOF@CSC composite sponge) was successfully synthesized in an acidic environment using a one-step technique. Modifying the composition of adsorbent materials is a commonly employed strategy to enhance adsorption capacity, particularly for materials composed of metal-organic frameworks. The study investigated the impact of the composite sponge on the adsorption and removal of Hg(II). The composite sponge exhibited a maximum adsorption capacity (qmax) for Hg(II) at 765.22 mg/g and an impressive high surface area of 1208 m2/g. Various factors influencing the adsorption capacity were taken into account in this study. The adsorption isotherm and kinetics were modeled using Langmuir and pseudo-second-order equations, respectively. Consistent with thermodynamics, the adsorption process was identified as spontaneous and endothermic. The quantities of adsorbed substances increased with rising temperature. The La-MOF@CSC composite sponge demonstrated the ability to be reused up to five times with satisfactory efficiency, retaining its chemical composition and exhibiting similar XRD and XPS data before and after each reuse. The interaction between heavy metals and the La-MOF/CSC composite sponge was examined. Optimization of the adsorption outcomes was conducted using the Box-Behnken design (BBD).


Asunto(s)
Quitosano , Mercurio , Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Quitosano/química , Adsorción , Mercurio/análisis , Cinética , Citratos , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
9.
ACS Omega ; 9(1): 1562-1572, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222558

RESUMEN

Thermochromic inks have proven to be a promising security encoding approach for making commercially available products less susceptible to forgery. However, thermochromic inks have been plagued with poor durability. Thus, self-healable hydrogels can be used as self-repair inks with better durability. Herein, we combined hybrid cellulose nanofibers (CNFs) and sodium alginate (SA) with anthocyanidin(Cy)-based Brassica oleracea L. var. capitata extract in the existence of mordant (ferrous sulfate) to create a self-healing ink for authentication. CNFs were used as a reinforcement agent to enhance the mechanical strength of the sodium alginate hydrogel. Both durability and thermal stability were ensured using self-healing inks. Red cabbage was used to extract Cy-based chromophore as an environmentally friendly spectroscopic probe for immobilization into SA. Using varying concentrations of anthocyanidin, self-healable composite hydrogels (Cy@SA) with thermochromic properties were provided. Using the CIE Lab color coordinate system, homogeneous purple (569 nm) films were printed onto a sheet surface. Upon heating from 25 to 70 °C, the purple color changed to red (433 nm). Transmission electron microscopy was applied to study anthocyanidin/mordant (Cy/M) nanoparticles (NPs). The properties of the applied prints were analyzed using several methods. Both the hydrogel and stamped sheets were tested for their mechanical and rheological characteristics, respectively. Research on the nanocomposite ink (Cy@SA) antibacterial properties and cytotoxicity was also conducted.

10.
Microsc Res Tech ; 87(3): 591-601, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009361

RESUMEN

Smart clothing refers to textiles that can sense an external stimulus by changing their physical properties such as colorimetric and fluorescent fabrics. The pad-dry-curing coloration approach was used to apply a luminous and hydrophobic composite coating onto cellulose-based materials. This novel method includes incorporating phosphor nanoparticles made from lanthanide-doped strontium aluminum oxide (LSAO) into room temperature vulcanizing silicone rubber (RTV). The LSAO nano-sized particles (3-8 nm) must be mixed evenly throughout RTV without aggregation to allow for the formation of a colorless layer onto viscose surface. Pad-dry-curing the film onto viscose cloth worked well at room temperature. The contact angles of the luminous fibers enhanced from 138.6° to 158.2° as the LSAO ratio increased. The antimicrobial and ultraviolet (UV) protection of the LSAO-finished viscose were investigated. The transparent fluorescent film on viscose surface was excited at 367 nm to display an emission peak at 518 nm. According to CIE Lab coordinates and luminescence analyses, the fluorescent viscose fibers showed various colors, including white under visible light, intense green beneath UV device, and greenish-yellow under darkness. The comfort properties of the LSAO-finished viscose were assessed by measuring their bend length and permeability to air. Transmission electron microscopic analysis of LSAO nanoparticles was explored. Energy dispersive x-ray, x-ray fluorescence, and scanning electron microscopy were utilized to describe the spectroscopic outcomes of the treated textiles. The colorfastness of the LSAO-finished viscose fabrics was examined. The coated fabrics exhibited a non-fatigable reversible luminous photochromism in response to UV illumination. RESEARCH HIGHLIGHTS: Multifunctional LSAO@RTV nanocomposite was pad-dry-cured onto viscose textile. Photochromism to green under UV light and greenish-yellow in the dark was detected. Efficient antimicrobial, UV protective, and superhydrophobic activity were observed. The antimicrobial properties were maintained for 24 washing cycles. Pad-dry-cured viscose showed good comfortability and photostability.

11.
Luminescence ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088104

RESUMEN

Polyester textiles have been applied in numerous industrial applications. Polyester fibers are characterized with being excellent insulators to electricity, having excellent flexural and impact strength, ease of manufacture, low-cost, as well as having resistance to moisture and chemicals. However, polyester fibers cannot be stained due to the absence of active dyeing sites on the surface of the fibrous structure. Thus, polyester cannot be dyed after it has been extruded. Herein, we report the development of novel-colored polyester fabrics using plasma-assisted dyeing and anthocyanin natural probe for determination of ammonia that may cause severe harmful effects to human organs and even death. Anthocyanin was extracted from red cabbage and characterized. The water-soluble anthocyanin was fastened to polyester fibers by mordant (potash alum) to generate anthocyanin-mordant coordinative complex nanoparticles. Polyester can be treated with thin layer of anthocyanin probe after activation with plasma. The results showed excellent colorfastness, ultraviolet blocking, and antibacterial performance of the anthocyanin-dyed polyester (APET) fibers. The APET fibers showed great potential for developing a portable colorimetric device for an on-site detection of ammonia. APET displayed a detection limit of aqueous ammonia in the range of 25-200 ppb, displaying a change in color from purple (542 nm) to white (387 nm).

12.
ACS Omega ; 8(35): 32130-32145, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37692223

RESUMEN

Eliminating pesticides is essential for lowering the dangers to our environment. To do this effectively, it is crucial to find adsorbents with remarkable adsorption capacities, easy retrieval, and separation. Metal-organic frameworks (MOFs) have been extensively recognized for their exceptional ability to absorb pollutants. Therefore, we used novel lanthanum metal-organic frameworks (La-MOFs) to eliminate deltamethrin (DEL) from aqueous solutions. We proved through experimentation that the La-MOF is an efficient adsorbent for DEL from water. A study of the material revealed that the adsorbent had a surface area of 952.96 m2 per gram and a pore volume of 1.038 cm3/g. These outcomes show how this substance can absorb particles. Utilizing kinetic models and conforming to the pseudo-second-order model, a thorough analysis of the efficiency of DEL adsorption onto La-MOF was conducted. To create a perfectly tailored approach, we utilized many parameters. The synthetic La-MOF adsorbent may undergo up to five steps of adsorption-desorption and has exceptional cyclability and reusability. To confirm purifying wastewater samples in the laboratory, the presentation of the established adsorbent was evaluated. For the management of industrial effluent and water filtration, the La-MOF adsorbent offered a simple and effective solution. Our investigation suggests that the method we describe for removing DEL from wastewater samples using the La-MOF adsorbent is unique.

13.
ACS Omega ; 8(33): 30374-30388, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636940

RESUMEN

This study looked at the doxorubicin hydrochloride (DOX) anticancer drug's adsorption characteristics on a silver-based metal-organic framework (Ag-MOF). X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used for the characterization of Ag-MOF. The pore volume and surface area of Ag-MOF were determined through Brunauer-Emmett-Teller (BET) testing at 77 K to be 0.509 cm3/g and 676.059 m2/g, respectively. Adsorption at pH 6 was established to be the best for DOX compared to alkaline solution. Ag-MOF has a good capacity for eliminating DOX (1.85 mmol/g), according to adsorption experiments. From the adsorption results, we can find that Langmuir is the most fitted adsorption isotherm model and the pseudo-second order model best fitted the adsorption kinetics. The energy of activation for adsorption, which was determined to be 15.23 kJ/mol, also supported a chemisorption process. The mechanism of adsorption was evaluated, and details of all possible interactions between DOX and Ag-MOF were illustrated. On the other hand, while examining the impact of temperature, we identified the thermodynamic constraints as ΔG°, ΔH°, and ΔS° and confirmed that the reaction was an endothermic one and spontaneous. Even after numerous reuse cycles, the efficiency remained constant. The synthetic adsorbent was remarkably recyclable at a rate of more than 91.6%. By using the MTT assay, the cytotoxicity of the tested Ag-MOF and DOX@Ag-MOF against human breast cancer cells (MCF-7) was evaluated in vitro. The in vitro antimicrobial activity of Ag-MOF and DOX@Ag-MOF was also tested.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 122986, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37336189

RESUMEN

Electrospun glass nanofibers (GNFs) were used to strengthen polycarbonate (PC) to create long-persistent photoluminescent and fluorescent smart materials such as afterglow concrete and smart window. Physical integration of lanthanide-activated aluminate (LA) nanoparticles (NPs) yielded transparent GNFs@PC smart sheets. Spectral investigations utilizing photoluminescence and CIE Lab parameters were performed to confirm that the translucent appearance of GNFs@PC changed to green when exposed to UV light. This fluorescence activity was quickly reversible for the GNFs@PC hybrids with low concentrations of LANPs, which indicate fluorescence emission. Higher phosphor concentrations in GNFs@PC led to longer-lasting afterglow photoluminescence and slower reversibility. The GNFs@PC hybrids showed an emission band detected at 518 nm upon excitation at 368 nm. The morphological characteristics of LANPs and GNFs were analyzed by transmission electron microscopy (TEM), which revealed sizes of 11-26 nm and 250-300 nm, respectively. GNFs were prepared using electrospinning technology and then used as a roughening agent into PC sheets. Morphological characteristics of GNFs and GNFs@PC smart sheets were examined using energy-dispersive X-ray spectroscopy (EDXA), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The GNFs@PC smart sheets were shown to have enhanced scratch resistance in comparison to LANPs-free PC control sample. Increases in LANPs concentration enhanced both hydrophobicity and UV protection.

15.
ACS Omega ; 8(21): 19006-19015, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37273581

RESUMEN

Herein, the fabrication and full characterization of a novel atomoxetine (ATX) voltammetric carbon paste electrode (CPE) fortified with iron oxide nanoparticles (FeONPs) is demonstrated. Modification of the carbon paste matrix with the metallic oxide nanostructure provides proper electrocatalytic activity against the oxidation of ATX molecules at the carbon paste surface, resulting in a noticeable improvement in the performance of the sensor. At the recommended pH value, ATX recorded an irreversible anodic peak at 1.17 V, following a diffusion-controlled reaction mechanism. Differential pulse voltammograms exhibited peak heights linearly correlated to the ATX content within a wide concentration range from 45 to 8680 ng mL-1, with the limit of detection reaching 11.55 ng mL-1. The electrooxidation mechanism of the ATX molecule was proposed to be the oxidation of the terminal amino group accompanied by the transfer of two electrons and two protons. The fabricated FeONPs/CPE sensors exhibited enhanced selectivity and sensitivity and therefore can be introduced for voltammetric assaying of atomoxetine-indifferent pharmaceutical and biological samples in the presence of its degradation products and metabolites.

16.
ACS Omega ; 8(19): 16956-16965, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37214711

RESUMEN

ß-Cyclodextrin (CD) is currently exploited for the implantation of lipophobic polymer dots (PDs) for antimicrobial and anticancer laborers. Moreover, the PDs were investigated to act as a chemo-sensor for metal detection. The data revealed that under basic conditions, photoluminescent PDs (5.1 nm) were successively clustered with a controllable size at 190 °C, whereas under acidic conditions, smaller-sized non-photoluminescent carbon nanoparticles (2.9 nm) were obtained. The fluorescence intensity of synthesized PDs under basic conditions was affected by pH, and such an intensity was significantly higher compared to that prepared under acidic conditions. The PDs were exploited as florescent detectors in estimation of Ag+ ions in aquatic streams. Treatment of Ag+ ion colloids with PDs resulted in fluorescence quenching attributing to the production of AgNPs that approved by spectral studies. The cell viability percent was estimated for Escherichia coli, Staphylococcus aureus, and Candida albicans after incubation with PDs implanted under basic conditions for 24 h. The cell mortality percent was estimated for breast cancer (MCF-7) after incubation with different concentrations of PDs that were implanted under acidic versus basic conditions to show that treatment of the tested cells with 1000 µg/mL PDs prepared under basic (IC50 232.5 µg/mL) and acidic (IC50 88.6 µg/mL) conditions resulted in cell mortality percentages of 70 and 90%, respectively.

17.
Luminescence ; 38(8): 1431-1439, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37081595

RESUMEN

Novel smart cotton diagnostic assay was developed toward onsite sensing of sweat pH variations for possible medical applications such as drug test and healthcare purposes. Humulus lupulus L. extract was obtained according to previously reported procedure. As reported by high-performance liquid chromatography (HPLC), the extract demonstrated the presence of hop acids, prenylchalcones, and prenylflavanones, which is responsible for the colorimetric changes. The extract was applied to cellulose fibers employing potassium aluminum sulfate as mordant. This was observed by the formation of mordant/xanthohumol nanoparticles onto cotton surface. The absorption spectra and CIE (Commission Internationale de l'Eclairage) Lab screening of the prepared cotton assay showed colorimetric changes in association with hypsochromic shift from 600 nm to 433 nm upon exposure to sweat simulant fluid (pH < 7). The biochromic activity of the xanthohumol-finished cotton depends mainly on the halochromic performance of the xanthohumol chromophore to show a colorimetric switch from yellow to white owing to intramolecular charge transfer in the xanthohumol molecule. No substantial defects were detected in gas-permeability and stiffness of the treated fabrics. Satisfactory fastness was approved for the xanthohumol-dyed diagnostic cotton assay.


Asunto(s)
Humulus , Humulus/química , Sudor/química , Colorimetría , Flavonoides/química , Concentración de Iones de Hidrógeno , Extractos Vegetales/química
18.
Luminescence ; 38(8): 1440-1448, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37085957

RESUMEN

Pentafluoroaryl analogues have been found to exhibit para specific nucleophilic aromatic substitution (SN Ar). Herein, we describe the use of SN Ar chemistry to create luminous perfluorinated symmetrical terphenyls. Both of SN Ar chemistry and copper(I)-catalysed decarboxylative cross-coupling were applied for the synthesis of the perfluorinated symmetrical terphenyls in high yields from the corresponding derivatives of aryl iodide and potassium salt of fluorobenzoate. A series of perfluorinated symmetrical terphenyls with different para alkoxy chains were synthesized. The synthesized perfluorinated terphenyl adducts were confirmed via elemental analysis, Fourier-transform infrared (FTIR), proton (1 H) carbon-13 (13 C) and fluorine-19 (19 F) nuclear magnetic resonance (NMR) spectra. The absorbance and fluorescence spectra showed solvatochromic activities. The new synthesized fluoroterphenyl hybrids were screened against antioxidant inspection over DPPH (2,2-diphenyl-1-picrylhydrazyl) performance, in assessment of vitamin C and butylated hydroxytoluene (BHT) as standard drugs exposed that fluoroterphenyl hybrid covering decyl hydrocarbons exhibited highest effectiveness through half maximal inhibitory concentration (IC50 ) values of 21.74 µg/ml. Additionally, molecular docking procedures of the synthesized fluoroterphenyl hybrids were employed by using protein data bank (PDB ID: 5IKQ). The docking simulation displayed convenient and recognized findings with the antioxidant examination.


Asunto(s)
Antioxidantes , Cobre , Antioxidantes/química , Simulación del Acoplamiento Molecular , Ácido Ascórbico , Espectroscopía de Resonancia Magnética
19.
RSC Adv ; 13(10): 6466-6480, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36860528

RESUMEN

As their manufacturing and consumption have increased, pharmaceutical chemicals have increasingly been found in wastewater. It is necessary to look into more effective methods, including adsorption, because current therapies can't completely eliminate these micro contaminants. This investigation aims to assess the diclofenac sodium (DS) adsorption onto an Fe3O4@TAC@SA polymer in a static system. Through Box-Behnken design (BBD), system optimization was carried out, and the ideal conditions - adsorbent mass of 0.01 g and agitation speed of 200 rpm - were chosen. The adsorbent was created utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), allowing us to gain a comprehensive understanding of its properties. The analysis of the adsorption process revealed that the external mass transference was the primary rate-controlling step, and the Pseudo-Second-Order model demonstrated the best correlation to kinetic experimental results. An endothermic, spontaneous adsorption process took place. The removal capacity was 858 mg g-1, which is a respectable result when compared to other adsorbents that have been utilized in the past to remove DS. Ion exchange, π-π interactions, electrostatic pore filling and hydrogen bonding all play a role in the adsorption of DS on the Fe3O4@TAC@SA polymer. After careful examination of the adsorbent towards a true sample, it was determined to be highly efficient after three regenerative cycles.

20.
Environ Sci Pollut Res Int ; 30(22): 62676-62688, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36947383

RESUMEN

Simple and green strategy was described for the development of multifunctional polyester nanofibers (PNFs). Solution blow spinning (SBS) technology was applied to in situ immobilize nanocomposites of polyaniline (PANi) and silver nanoparticles (AgNPs) into plasma-treated polyester nanoscaled fibers prepared. The polyester nanofibers were prepared from recycled polyethylene terephthalate waste, which was exposed plasma-curing and a REDOX reaction in the presence of AgNO3, aniline, and CH3COONH4. Plasma-catalyzed oxidative polymerization of aniline to polyaniline together with a reductive process of Ag+ to silver nanoparticles led to their enduring insoluble dispersion into the surface of polyester nanofibers. By taking the advantage of the PANi oxidation, AgNPs were precipitated from an aqueous medium of AgNPs. The morphological properties were investigated by various analytical techniques. The polyester fiber diameter was determined in the range of 450-650 nm. In addition, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were utilized to examine AgNPs, demonstrating diameters of 4-20 nm. The plasma-uncured AgNPs/PANi immobilized nanofibrous film displayed weak absorption bands at 399 nm and 403 nm upon increasing the concentration of AgNPs. On the other hand, the plasma-cured AgNPs/PANi immobilized nanofibers displayed strong absorption bands at 526 nm and 568 nm upon increasing the concentration of AgNPs. The AgNP-induced antimicrobial performance and the PANi-induced electrically conductivity were explored. The prepared PNFs showed high UV protection.


Asunto(s)
Nanopartículas del Metal , Nanofibras , Plata/farmacología , Tereftalatos Polietilenos , Compuestos de Anilina , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA