Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Tissue Cell ; 91: 102574, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39353228

RESUMEN

Little is known about the effects of acrylamide (AMD) on the stomach. So, this study evaluated the effect of oral AMD exposure (20 mg/kg b.wt) on oxidative status, apoptotic, and inflammatory reactions in rat's stomach for 60 days. To explore novel targets of AMD toxicity, a more detailed molecular and immune-expression study was performed. Besides, the possible protective effect of green synthesized zinc oxide nanoparticles (G-ZNP) (10 mg/kg b.wt) was explored. The results revealed that AMD significantly provoked oxidative and lipid peroxidative damage of the stomach in terms of increased ROS and MDA but reduced SOD, CAT, GSH, and GSH/GSSG. Additionally, the stomachs of AMD-exposed rats showed a significant increment of PGE2 but reduced NO. Histopathologically, AMD induced a significant increase in PAS stain and the immunoexpression of iNOS and NF-κB in the glandular stomach. A significant upregulation of CART, VACHT, EGFR, caspase-3, NOS-1, and miR-27a-5p was evident in the stomach of the AMD group. Yet, G-ZNP oral dosing significantly rescued the AMD-induced oxidative damage, apoptotic reaction, inflammatory effect, and altered miR-27a-5p and gene expressions in the stomach. Conclusively, these findings demonstrated the efficacy of G-ZNP in protecting against the harmful impacts of acrylamide on stomach tissues.

2.
Food Chem Toxicol ; 186: 114520, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369055

RESUMEN

Fenpropathrin (FN), a pyrethroid has been linked to potential pulmonary toxic effects to humans via incident direct or indirect ingestion. Thus, we aimed to the investigate the underlying mechanisms of lung toxicity upon exposure to FN in the rat model, besides studying whether curcumin (CCM) and curcumin-loaded chitosan nanoformulation (CCM-Chs) can mitigate FN-induced lung damage. Six distinct groups, namely, control, CCM, CCM-Chs, FN, and CCM + FN, CCM-Chs + FN were assigned separately. The inflammatory, apoptotic, and oxidative stress states, histological, immunohistochemical, and immunofluorescence examination of different markers within the pulmonary tissue were applied. The results revealed that the FN-induced tissue damage might be caused by the oxidative stress induction and depressed antioxidant glutathione system in the lungs of rats. Furthermore, FN upregulated the expression of genes related to inflammation, and pyroptosis, and elevated the immunoreactivity of Caspase-3, tumor necrosis factor-α, vimentin, and 4-Hydroxynonenal in pulmonary tissues of FN-exposed rats compared to the control. CCM and CCM-Chs mitigated the FN-induced disturbances, while remarkably, CCM-Chs showed better potency than CCM in mitigating the FN-induced toxicity. In conclusion, this study shows the prominent preventive ability of CCM-Chs more than CCM in combatting the pulmonary toxicity induced by FN. This may be beneficial in developing therapeutic and preventive strategies against FN-induced pulmonary toxicity.


Asunto(s)
Curcumina , Piretrinas , Humanos , Ratas , Animales , Curcumina/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Estrés Oxidativo , Piretrinas/toxicidad , Apoptosis , Colorantes , Pulmón
3.
Tissue Cell ; 87: 102313, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38286061

RESUMEN

BACKGROUND: Doxorubicin (Dox) is one of the most effective anti-neoplastic agents. Quercetin (QE) exhibits antioxidant and anti-inflammatory properties. AIM: To detect neuroprotective properties of quercetin in rats exposed to doxorubicin-induced brain injury. MATERIAL AND METHODS: 48 rats were allocated equally into four groups: control group: (given normal saline), QE group: (given 80 mg/kg of QE orally daily for 2 weeks), Dox group: (received 2.5 mg/kg of Dox every other day for a total of seven intraperitoneal injections), and Dox+QE group: (received 2.5 mg/kg of Dox every other day for a total of seven intraperitoneal injections and 80 mg/kg of QE orally daily for 2 weeks). Subsequently, biochemical analyses were carried out along with histopathological (light and electron microscopic) and immunohistochemical examinations of the cerebral cortex and hippocampus. RESULTS: The Dox group revealed a decline in the activities of superoxide dismutase, catalase, and glutathione peroxidase, along with an increase in malondialdehyde and an increase in DNA damage. Furthermore, sections of the cerebral cortex and hippocampus revealed neurodegenerative changes, decreased synaptophysin, and increased Interleukin-1 beta expressions. Biochemical and histopathological results were markedly improved by QE administration. CONCLUSIONS: It can be concluded that QE induces protective effects against Dox-induced neurotoxicity.


Asunto(s)
Estrés Oxidativo , Quercetina , Ratas , Animales , Quercetina/farmacología , Antioxidantes/farmacología , Doxorrubicina/toxicidad , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Hipocampo , Daño del ADN , Plasticidad Neuronal
4.
Food Chem Toxicol ; 179: 113977, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37532170

RESUMEN

This study delves into the intricate exploration of potential toxic effects resulting from subchronic exposure to fenpropathrin (FNP) on the reproductive system of male SD rats. Adding to the novelty, our study undertakes a pioneering comparison of the effects of curcumin (CUR) and curcumin-encapsulated chitosan nanoparticles (CS.CUR.NPs) on these toxic effects. The study involved a cohort of sixty male SD rats (six groups): vehicle control, CUR, Cs.CUR.NPs, FNP, and two combination groups (FNP with CUR or Cs.CUR.NPs). The synthesized Cs.CUR.NPs nanoparticles underwent meticulous characterization using Fourier Infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The findings revealed that FNP caused oxidative stress, sperm abnormalities, reduced motility and sperm count FNP decreased serum LH, FSH, 17-ß estradiol, and testosterone levels. FNP downregulated the mRNA expression of the spermatogenesis and steroidogenesis-related genes, While, downregulated hypothalamic KISS-1 and KISS-1r expression. Histopathological alterations were assessed and scored. Surprisingly, the treatment with CUR and Cs.CUR.NPs exhibited remarkable restorative effects on semen quality, sex hormone levels, antioxidant capacity, and mRNA expression of the targeted genes. Notably, Cs.CUR.NPs displayed superior properties when compared to CUR. Nevertheless, further research is imperative to evaluate their efficacy across various bodily tissues.


Asunto(s)
Quitosano , Curcumina , Nanopartículas , Piretrinas , Masculino , Ratas , Animales , Curcumina/farmacología , Quitosano/química , Espectroscopía Infrarroja por Transformada de Fourier , Análisis de Semen , Estudios Prospectivos , Ratas Sprague-Dawley , Semen , Nanopartículas/química , Genómica , ARN Mensajero
5.
Antioxidants (Basel) ; 12(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36829920

RESUMEN

This study assessed the possible protective role of green synthesized zinc oxide nanoparticles using Moringa olifera leaf extract (MO-ZNPs) in acrylamide (ACR)-induced reproductive dysfunctions in male rats. ACR (20 mg/kg b.wt/day) and/or MO-ZNPs (10 mg/kg b.wt/day) were given orally by gastric gavage for 60 days. Then, sperm parameters; testicular enzymes; oxidative stress markers; reproductive hormones including testosterone, luteinizing hormone (LH)-estradiol, and follicle-stimulating hormone (FSH) concentration; testis histology; steroidogenesis-related gene expression; and apoptotic markers were examined. The findings revealed that MO-ZNPs significantly ameliorated the ACR-induced decline in the gonadosomatic index and altered the pituitary-gonadal axis, reflected by decreased serum testosterone and FSH with increased estradiol and LH, and sperm analysis disruption. Furthermore, a notable restoration of the tissue content of antioxidants (catalase and reduced glutathione) but depletion of malondialdehyde was evident in MO-ZNPs+ACR-treated rats compared to ACR-exposed ones. In addition, MO-ZNPs oral dosing markedly rescued the histopathological changes and apoptotic caspase-3 reactions in the testis resulting from ACR exposure. Furthermore, in MO-ZNPs+ACR-treated rats, ACR-induced downregulation of testicular steroidogenesis genes and proliferating cell nuclear antigen (PCNA) immune-expression were reversed. Conclusively, MO-ZNPs protected male rats from ACR-induced reproductive toxicity by suppressing oxidative injury and apoptosis while boosting steroidogenesis and sex hormones.

6.
Food Chem Toxicol ; 171: 113537, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36442736

RESUMEN

Repeated acrylamide (ACR) exposure in experimental animals and humans causes variable degrees of neuronal damage. Because of its unique features, several green synthesized nanomaterials are explored for neuromodulatory activity. Hence, this study investigated the effect of green synthesized zinc oxide nanoparticles using Moriga olifera leaves extract (MO-ZnONP) against acrylamide (ACR)-induced neurobehavioral and neurotoxic impacts in rat. Forty male Sprague Dawley rats were distributed into four groups orally given distilled water, MO-ZnONP (10 mg/kg b.wt), ACR (20 mg/kg b.wt), or MO-ZnONP + ACR for 60 days. Gait quality and muscular, motor, and sensory function were assessed. Acetylcholinesterase (AChE), dopamine, catalase, malondialdehyde (MDA), and Zn brain contents were determined. Brain histopathology and immunohistochemical localization of the amyloid-ß protein and abnormal Tau were performed. The results revealed that MO-ZnONP significantly reduced ACR-induced sensory dysfunctions, hind limb abnormality, and motor deficits. Additionally, the ACR-induced increase in dopamine and AChE were significantly supressed by MO-ZnONP. Besides, MO-ZnONP significantly restored catalase and Zn content but reduced increased MDA brain content resulting from ACR. Furthermore, the ACR-induced neurodegenerative changes and increased amyloid-ß and phosphorylated Tau immunoexpression was significantly abolished by MO-ZnONP. Conclusively, MO-ZnONP could be used as a biologically effective compound for mitigating ACR's neurotoxic and neurobehavioral effects.


Asunto(s)
Nanopartículas , Síndromes de Neurotoxicidad , Óxido de Zinc , Humanos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Estrés Oxidativo , Catalasa/metabolismo , Óxido de Zinc/farmacología , Acrilamida/toxicidad , Acetilcolinesterasa/metabolismo , Dopamina , Síndromes de Neurotoxicidad/etiología
8.
Pharmaceutics ; 14(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35745756

RESUMEN

Gut modulation by multi-strain probiotics (MSPs) is considered an effective strategy for treating inflammatory bowel disease (IBD). The combination of nanomaterial-based MSPs can improve their viability and resistance and can allow their targeted release in the gastrointestinal tract to be achieved. Thus, our aim is to investigate the prospective role of MSP integration into nanomaterials (MSPNPs) and the underlying molecular mechanisms supporting their application as an alternative therapy for IBD using a colitis rat model. To induce the colitis model, rats received 5% DSS, and the efficacy of disease progression after oral administration of MSPNPs was assessed by evaluating the severity of clinical signs, inflammatory response, expressions of tight-junction-related genes and NLRP3 inflammasome and caspase-1 genes, microbial composition and histopathological examination of colonic tissues. The oral administration of MSPNPs successfully alleviated the colonic damage induced by DSS as proved by the reduced severity of clinical signs and fecal calprotectin levels. Compared with the untreated DSS-induced control group, the high activities of colonic NO and MPO and serum CRP levels were prominently reduced in rats treated with MSPNPs. Of note, colonic inflammation in the group treated with MSPNPs was ameliorated by downstreaming NLRP3 inflammasome, caspase-1, IL-18 and IL-1ß expressions. After colitis onset, treatment with MSPNPs was more effective than that with free MSPs in restoring the expressions of tight-junction-related genes (upregulation of occludin, ZO-1, JAM, MUC and FABP-2) and beneficial gut microbiota. Interestingly, treatment with MSPNPs accelerated the healing of intestinal epithelium as detected in histopathological findings. In conclusion, the incorporation of MPSs into nanomaterials is recommended as a perspective strategy to overcome the challenges they face and augment their therapeutic role for treating of colitis.

9.
Environ Sci Pollut Res Int ; 29(54): 81923-81937, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35739448

RESUMEN

Copper nanoparticles are widely utilized in a variety of applications, including metal catalysts, semiconductors, heat transfer fluids in machine tools, and even in antibacterial medications. Forty mature healthy Westar rats were utilized in the current investigation and grouped randomly into four groups (n = 10 rats/group). Group I (G1) was kept as a control group, but G2, G3, and G4 were intraperitoneally injected with CuO NPs with a dose (5 mg, 10 mg, 25 mg/kg body weight/day) respectively for 9 days. Rats were sacrificed; then, the livers and kidneys were dissected and subjected to histopathological and immunohistochemical examination. Our findings of G2 and G3 revealed mild to moderate degenerative changes within the hepatic parenchyma, moderate blood vessel congestions, glycogen depletion, hemosiderosis, and microvesicular steatosis (fatty changes within the hepatocytes). In addition, at the level of kidney, our examination clarified moderate degenerations of the renal corpuscles and renal tubules with moderate swelling and congestions of the glomerulus with moderate vacuolations in the renal tubules lining epithelium. On the other hand, increasing the dose of CuO NPs, the toxicity became more obvious, where the liver of G4 revealed severe necrosis of hepatocytes with completely disorganizations of the hepatic rays, loss of the hepatic architectures, severe steatosis, severe hemosiderosis, sinusoidal dilatations with congestions, as well as severe fibrous tissue proliferation with anti-inflammatory cell infiltrations specially around portal triad with hyperplasia of bile duct. Meanwhile in kidney, G4 clarified severe necrosis and atrophy of the renal corpuscles with severe damage of Bowman's capsule leading to completely disorganization and loss of normal renal cortex architectures, severe congestion of the glomerulus, severe necrosis of the renal tubules with damage and sloughing for its lining epithelium, and severe hemorrhage between renal tubules. In addition, severe and diffuse caspase 3 immunoreactivity were observed within the hepatic and renal tissues of G4. The present investigation was concluded that the CuO NPs have a potential toxicological effect on the hepatic and renal tissues that may affect their functions.-->.


Asunto(s)
Hemosiderosis , Nanopartículas del Metal , Nanopartículas , Ratas , Masculino , Animales , Cobre/toxicidad , Caspasa 3 , Hemosiderosis/patología , Hígado , Nanopartículas/toxicidad , Necrosis/inducido químicamente , Glucógeno , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Óxidos/farmacología , Nanopartículas del Metal/toxicidad
10.
Gene ; 837: 146697, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35764235

RESUMEN

Nicotine is one of several physiologically stable and active chemicals found in tobacco. The mechanism through which nicotine causes kidney damage is still obscure. As a result, the goal of this research was to investigate how oral nicotine intake can lead to kidney damage. Naturaly occurring superfood green algae are immense supplements help us using extra chemicals during cancer prevalence if the patient is exposed to nicotine. Hence, the mitigating role of Chlorella vulgaris extract (CVE) against nicotine-nephrotoxic impact in Ehrlich ascites carcinoma (EAC)-bearing mice was studied. For this purpose, four groups of Swiss female mice were assigned, nicotine group (NIC) (100 µg/ml/kg), CVE group (100 mg/kg), CVE + Nicotine, and a control group. Renal dysfunction was evaluated by estimating serum biomarkers ofrenal damage. The expression pattern of Nf-KB, MAPK, P53, and α7-nAchR, lipid peroxidation biomarker, and antioxidant enzyme activities were evaluated in kidney tissue. Also, micro-morphometric examination and apoptosis immunohistochemical reactivity of kidney tissue were applied. The obtained results indicated up-regulation of all estimated genes and oxidative stress. Moreover, a significant (P < 0.05) increment in the apoptotic marker Caspase-3 and declined BCL-2 proteins were recorded. In serum, a significant (P < 0.05) elevation of urea, creatinine, TNF-α, IL-1ß, and Kim-1 were evident. Histological investigation reinforced the aforementioned data, revealing structural changes involving the tubules, glomeruli, and interstitium of mice kidneys. CVE may be a strong contender for protecting renal tissue damage since it reduces renal tissue injury and oxidative stress. Cancer patients who regularly use nicotine through direct smoking or second-hand exposure can benefit from CVE usage as a dietary supplement.


Asunto(s)
Carcinoma , Chlorella vulgaris , Receptores Nicotínicos , Animales , Ascitis/inducido químicamente , Chlorella vulgaris/metabolismo , Femenino , Riñón/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nicotina , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
11.
Biomolecules ; 12(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35625591

RESUMEN

The rate of chronic kidney disease (CKD) is increasing globally, and it is caused by continuous damage to kidney tissue. With time the renal damage becomes irreversible, leading to CKD development. In females, post-menopause lack of estrogen supply has been described as a risk factor for CKD development, and studies targeting post-menopause CKD are scarce. In the present study, we used exosomes isolated from bone marrow mesenchymal stem/stromal cells (BM-MSCs) to test their therapeutic potential against the development of CKD. At first, the menopause model was achieved by surgical bilateral ovariectomy in female albino rats. After that, 100 µg of exosomes was given to ovariectomized rats, and the study continued for 2 months. Changes in urine volume, urine protein content, kidney function biochemical parameters (creatinine and BUN), kidney antioxidant parameters (SOD, GPx and CAT), histological changes, immunohistochemical levels of caspase 3, and the gene expression of NGAL (related to kidney damage), TGFß1 and αSMA (related to fibrosis and EMT), and caspase 3 (related to apoptosis) were studied. After the ovariectomy, the occurrence of CKD was confirmed in the rats by the drastic reduction of serum estrogen and progesterone levels, reduced urine output, increased urinary protein excretion, elevated serum creatinine and BUN, reduced GPx SOD, and CAT in kidney tissue, degenerative and fibrotic lesions in the histopathological examination, higher immunohistochemical expression of caspase 3 and increased expression of all studied genes. After exosomes administration, the entire chronic inflammatory picture in the kidney was corrected, and a near-normal kidney structure and function were attained. This study shows for the first time that BM-MSCs exosomes are potent for reducing apoptosis and fibrosis levels and, thus, can reduce the chronic damage of the kidneys in females that are in their menopause period. Therefore, MSCs-derived exosomes should be considered a valuable therapy for preserving postmenopausal kidney structure and function and, subsequently, could improve the quality of females' life during menopause.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Insuficiencia Renal Crónica , Animales , Apoptosis , Caspasa 3/metabolismo , Estrógenos/metabolismo , Exosomas/metabolismo , Femenino , Fibrosis , Riñón/patología , Posmenopausia , Ratas , Insuficiencia Renal Crónica/metabolismo , Superóxido Dismutasa/metabolismo
12.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35337154

RESUMEN

Salmonella enterica serovar Typhimurium (S. typhimurium) is known for its intracellular survival, evading the robust inflammation and adaptive immune response of the host. The emergence of decreased ciprofloxacin (CIP) susceptibility (DCS) requires a prolonged antibiotic course with increased dosage, leading to threatening, adverse effects. Moreover, antibiotic-resistant bacteria can persist in biofilms, causing serious diseases. Hence, we validated the in vitro and in vivo efficacy of ciprofloxacin-loaded mesoporous silica nanoparticles (CIP-MSN) using a rat model of salmonella infection to compare the oral efficacy of 5 mg/kg body weight CIP-MSN and a traditional treatment regimen with 10 mg/kg CIP postinfection. Our results revealed that mesoporous silica particles can regulate the release rate of CIP with an MIC of 0.03125 mg/L against DCS S. typhimurium with a greater than 50% reduction of biofilm formation without significantly affecting the viable cells residing within the biofilm, and a sub-inhibitory concentration of CIP-MSN significantly reduced invA and FimA gene expressions. Furthermore, oral supplementation of CIP-MSN had an insignificant effect on all blood parameter values as well as on liver and kidney function parameters. MPO and NO activities that are key mediators of oxidative stress were abolished by CIP-MSN supplementation. Additionally, CIP-MSN supplementation has a promising role in attenuating the elevated secretion of pro-inflammatory cytokines and chemokines in serum from S. typhimurium-infected rats with a reduction in pro-apoptotic gene expression, resulting in reduced S. typhimurium-induced hepatic apoptosis. This counteracted the negative effects of the S. typhimurium challenge, as seen in a corrected histopathological picture of both the intestine and liver, along with increased bacterial clearance. We concluded that, compared with a normal ciprofloxacin treatment regime, MSN particles loaded with a half-dose of ciprofloxacin exhibited controlled release of the antibiotic, which can prolong the antibacterial effect.

13.
Free Radic Biol Med ; 182: 150-159, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35218913

RESUMEN

Chronic kidney disease (CKD) is an important global disease its rates are increasing worldwide. CKD is caused by injuries to kidney tissue that exceeds the rate of regeneration, which with time lead to irreversible renal damage and CKD become evident. In females, diminished estrogen supply in the postmenopausal period is associated with greater risk for developing CKD. In this study we isolated exosomes from bone marrow mesenchymal stem/stromal cells (BM-MSCs) and tested their therapeutic effects on post-menopause CKD (PM-CKD) and compared their effects with BM-MSCs. The menopause model was achieved by bilateral ovariectomy in 8-months-old female albino rats, then no treatment, 2 million BM-MSCs or 100 µg of exosomes (Exo) was given intravenously in tail vein to ovariectomized rats and the study continued for 8 weeks post-ovariectomy. Changes in weight, urine volume, urine protein content, kidney function biochemical parameters (creatinine and BUN), Kidney oxidative stress (MDA), kidney antioxidant parameters (SOD, GPx and CAT), histopathological changes, immunohistochemical expression of KIM-1 and, finally, genes related to renal damage (peroxiredoxin-3, KIM-1 and ICAM-1) and inflammation (TNF-α, Cox2 and IL-6) were recorded for all study groups. Post-ovariectomy there was an increased body weight, drastic reduction of estrogen and progesterone levels, reduced urine output, increased urinary protein excretion, elevated serum creatinine and BUN, increased MDA and reduced GPx SOD, and CAT in kidney tissue, chronic inflammation, degenerative and fibrotic lesions in histopathological examination, high expression of KIM-1 immunohistochemically and changes in gene expression analyses all pointing to the development of CKD in the study rats. In the PM-CKD groups receiving BM-MSCs or Exo, the whole chronic inflammatory picture was completely reversed towards a much normal kidney structure and function. The improvements were more observable with Exo compared to BM-MSCs. Overall, our results show for the first time that exosomes isolated from BM-MSCs are more potent in reducing chronic inflammatory changes in the kidney of postmenopausal females compared to the cell-based approach using BM-MSCs. Therefore, MSCs-derived exosomes are a promising therapeutic approach for preserving postmenopausal kidney structure and function and, subsequently, should improve the quality of life of postmenopausal females.


Asunto(s)
Exosomas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Exosomas/metabolismo , Femenino , Inflamación/metabolismo , Riñón/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Posmenopausia , Calidad de Vida , Ratas
14.
Gene ; 820: 146293, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35143943

RESUMEN

Cisplatin (CP) is an anticancer medication that is commonly used to treat solid tumors. Its use is, however, dose-restricted due to nephrotoxicity. We planned to compare the nephroprotective effects of three major compounds, including melatonin (MN), Ozone, or vitamin E, against the CP-induced renal damage in rats. CP was given once intraperitoneally (10 mg/kg,) eliciting acute kidney injury as assured by several adverse histological changes; glomerulopathy, tubulopathy, and vasculopathy, an inflammatory response including elevated TNF-α, IL-6, and IL-1ß. Furthermore, biochemical alterations including, elevated plasma levels of urea, uric acid, creatinine, phosphorous, decreased plasma calcium levels, and gene expression abnormalities; upregulation of N-acetyl-ß-d-glucosaminidase (NAG) and Transforming growth factor-ß1 (TGF-ß1), downregulation of CAT and SOD. Concurrent supplementation with either MN (10 mg/kg per os) or Ozone (1.1 mg/kg ip) and Vit E given by oral gavage (1 g/kg) for five consecutive days prior to CP injection and five days afterward displayed variable significant nephroprotective effects by mitigating the pro-inflammatory secretion, augmenting antioxidant competence, and modulating the gene expression in the renal tissue. The obtained biochemical, histological, and gene expression data suggested that MN had foremost rescue effects followed by Ozone then Vit E. MN's ameliorative effect was augmented in many indices including TNF-α, IL-6 , IL1-ß, uric acid, creatinine, sNGAL and GGT, more than observed in Ozone, and Vit E therapy. A combination of these medications is expected to be more useful in relieving the damaging renal effects of CP given to cancer patients, pending further toxicological and pharmacological research.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Factor 15 de Diferenciación de Crecimiento/metabolismo , Melatonina/farmacología , Ozono/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Vitamina E/farmacología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Animales , Antineoplásicos/farmacología , Antioxidantes/metabolismo , Cisplatino/farmacología , Cisplatino/toxicidad , Creatinina/sangre , Modelos Animales de Enfermedad , Expresión Génica , Factor 15 de Diferenciación de Crecimiento/efectos de los fármacos , Masculino , Melatonina/metabolismo , Neoplasias/tratamiento farmacológico , Ozono/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/efectos de los fármacos , Urea/sangre , Vitamina E/metabolismo
15.
J Trace Elem Med Biol ; 68: 126860, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34583094

RESUMEN

BACKGROUND: Lead (Pb) and aluminum (Al) are ubiquitous environmental pollutants and are known to induce neurodegenerative disorders. They enhance neuronal changes and may involve glial alterations and other consequences. We intend to evaluate the mechanism through which the long-term exposure to Pb acetate alone or in combination with aluminum-chloride induced neurological impacts in rats. METHODS: For this aim, a total number of forty male Sprague Dawley rats were assigned into four groups. Control (DW), Pb acetate (12.5 mg/kg BW), Al chloride (64 mg/kg BW), and the combination group were experimentally exposed for 60 days. Biochemical evaluation of oxidative stress biomarkers, transcriptional-mediated changes in the expression pattern of OGG1 and P53 genes by qRT-PCR were applied. Histopathological modifications in the brain tissue with immunohistochemical reactivity of GFAP were also detected. RESULTS: Our findings revealed that lipid peroxidation was markedly enhanced but inhibited antioxidant enzyme activity in brain tissue in all exposed groups regarding the control. Pb-acetate elevated the biochemical concentration of dopamine and serotonin while AlCl3 declined their levels in the brain homogenate of rats. Furthermore, the exposure to one or both metals elevated the comet assay indices and serum level of 8-hydroxy-2' -deoxyguanosine, up-regulated the expression of P53, OGG1 and GFAP immunoreactivity in the central nervous system. Histologically, they caused several brain tissue alterations. CONCLUSION: The exposure to Pb and/or Al could be key candidates for neurodegenerative changes in the brain of rats via oxidative, apoptotic, and DNA damaging pathways. Besides, according to our findings, exposure to both Pb acetate and Aluminium chloride have synergistic damaging effects on the central nervous system of rats. Also, they have opposing effects on the secretion of monoamine neurotransmitters DA and 5 H T.


Asunto(s)
Aluminio , Plomo , 8-Hidroxi-2'-Desoxicoguanosina , Acetatos , Aluminio/toxicidad , Cloruro de Aluminio , Animales , Antioxidantes/metabolismo , Encéfalo/metabolismo , Cloruros/toxicidad , ADN , ADN Glicosilasas , Plomo/toxicidad , Masculino , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Proteína p53 Supresora de Tumor/genética
16.
Gene ; 803: 145895, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34384862

RESUMEN

The expression profile of early B-cell factor (Ebf) genes and loss of function experiments denote a crucial role for these genes during the late stage of skeletogenesis. However, little is known regarding the expression and function of these genes during the early stage of skeletogenesis. Therefore, this study aimed to detail the spatiotemporal expression pattern of cEbf1, in comparison to cEbf2 and cEbf3, in chick limb buds and investigate its function during chondrogenesis. cEbf1-3 were co-expressed in the distal mesenchyme from a very early stage and later in the outer perichondrium and the surrounding noncartilaginous mesenchymal cells. Ebf1 loss of function through injection of RCASBP virus-carrying Ebf1 dominant-negative form (ΔEbf1) into the wing buds resulted in shortened skeletal elements with a clear defect in the chondrocyte differentiation program. In RCASBP-ΔEbf1 injected wing, the chondrogenesis was initiated normally but hindered at the maturation stage. Subsequently, the chondrocytes failed to become mature or hypertrophic and the long bone diaphysis was not properly developed. The final phenotype included shorter, thicker, and fused long bones. These phenotypic changes were associated with downregulation of the early [Sox9 and collagen type II (Col2a1)] and the late [alkaline phosphatase (AP)] chondrocytes differentiation markers in the limb buds. These results conclude that cEbf1 could be involved in a molecular cascade that promotes the terminal stages of chondrogenesis in the long bone anlagen.


Asunto(s)
Esbozos de los Miembros/crecimiento & desarrollo , Transactivadores/genética , Transactivadores/metabolismo , Animales , Embrión de Pollo , Condrogénesis , Regulación del Desarrollo de la Expresión Génica , Esbozos de los Miembros/metabolismo , Fenotipo
17.
Gene ; 768: 145288, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33181259

RESUMEN

The present study was carried out to explore a novel strategy with the hypothesis that the combined treatment with standard antidiabetic drug metformin (MET) and chitosan stabilized nanoparticles (CTS-Se-NPs) may have a potential role on insulin level, hepatic damage and apoptosis, and cardiac injury markers of type 2 diabetes mellitus (T2DM) in rat model. T2DM was induced by a high fat diet (HFD) for 8 weeks and a single injection of a low dose streptozotocin (STZ) (35 mg/kg) in Sprague Dawley rats. A total number of one hundred rats were divided into five groups; the first served as a control (non-diabetic) group and the other four groups served as diabetic rats. The treatments were even mono or combined therapy by CTS-Se-NPs and/or MET for 8 weeks. A group was given only MET (500 mg/kg bw/day), another was administered only CTS-Se-NPs at a dose of 2 mg se/kg/day, while the last group was given both of them (co-treated group). Biochemical, molecular and histopathological analyses were conducted to figure out the efficiency of the treatment by the monotherapeutic mode or combination therapy on the insulin level, oxidants/antioxidants status, inflammatory mediators, hepatic and cardiac injury biomarkers and apoptotic/anti-apoptotic gene expressions. Our results indicated that HFD/STZ-induced toxic effects on the serum, hepatic and cardiac tissues including a remarkable elevation of the oxidative and inflammatory mediators, and up-regulation of the apoptotic genes (Bax, Caspase-3, Fas, Fas-L) expression. Histologically, the heart tissue revealed various degenerative, vascular and inflammatory alterations characteristic to murine cardiomyopathy. Besides, livers from HFD-STZ-treated rats showed numerous cytotoxic, circulatory and inflammatory alterations. Combined therapy with MET and CTS-Se-NPs resulted in a better remarkable anti-diabetic effect demonstrated by substantial decreases in fasting blood glucose and insulin levels, and elevated with up-regulation of anti-apoptotic gene (BCL-2) and down-regulation of apoptotic genes after 8 weeks of treatment than that revealed in the monotherapeutic strategy. In addition, it ameliorated the damage of cardiac and hepatic tissues and reduced lipid accumulation, and pro-inflammatory cytokines levels and restored the antioxidant capacity. It could be concluded that, the combined strategy applied in the current study have a potential role to limit the diabetic complications and restore insulin resistance to a higher extent than monotherapeutic strategy and could be considered a promising therapeutic alternative in T2DM rat model.


Asunto(s)
Quitosano/química , Diabetes Mellitus Tipo 2/metabolismo , Cardiopatías/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Nanopartículas/química , Selenio/fisiología , Transducción de Señal/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Caspasas/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/inducido químicamente , Dieta Alta en Grasa/efectos adversos , Proteína Ligando Fas/metabolismo , Cardiopatías/etiología , Cardiopatías/metabolismo , Hipoglucemiantes/farmacología , Resistencia a la Insulina/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hepatopatías/etiología , Hepatopatías/metabolismo , Masculino , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Selenio/química , Estreptozocina/farmacología , Proteína X Asociada a bcl-2/metabolismo , Receptor fas/metabolismo
18.
Genesis ; 57(11-12): e23339, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31724301

RESUMEN

This study was conducted to check whether the three chick Early B-cell Factor (Ebf) genes, particularly cEbf1, would be targets for Shh and Bmp signals during somites mediolateral (ML) patterning. Tissue manipulations and gain and loss of function experiments for Shh and Bmp4 were performed and the results revealed that cEbf1 expression was initiated in the cranial presomitic mesoderm by low dose of Bmp4 from the lateral mesoderm and maintained in the ventromedial part of the epithelial somite and the medial sclerotome by Shh from the notochord; while cEbf2/3 expression was induced and maintained by Bmp4 and inhibited by high dose of Shh. To determine whether Ebf1 plays a role in somite patterning, transfection of a dominant-negative construct was carried out; this showed suppression of cPax1 expression in the medial sclerotome and upregulation and medial expansion of cEbf3 and cPax3 expression in sclerotome and dermomyotome, respectively, suggesting that Ebf1 is important for ML patterning. Thus, it is possible that low doses of Bmp4 set up Ebf1 expression which, together with Shh from the notochord, leads to establishment of the medial sclerotome and suppression of lateral identities. These data also conclude that Bmp4 is required in both the medial and lateral domain of the somitic mesoderm to keep the ML identity of the sclerotome through maintenance of cEbf gene expression. These striking findings are novel and give a new insight on the role of Bmp4 on mediolateral patterning of somites.


Asunto(s)
Tipificación del Cuerpo/genética , Transactivadores/genética , Animales , Proteína Morfogenética Ósea 4/metabolismo , Embrión de Pollo , Pollos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/genética , Mesodermo/metabolismo , Notocorda/metabolismo , Somitos/metabolismo , Factores de Transcripción/genética
19.
Complement Ther Med ; 46: 95-102, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31519295

RESUMEN

BACKGROUND AND AIMS: Cyclophosphamide (CPh) is a frequently used drug, in human and animals for its immunosuppressive and anticancer potential. However, it is metabolized by the liver yielding damaging toxicants (to the liver itself and other non-target vital organs) via oxidative stress, apoptosis induction and finally necrosis. Since there is no escaping of using such harmful medications, we focused on alleviating its side-effects. Panax ginseng Meyer is a potent candidate, and we still lack adequate information on its hepatoprotective role against cyclophosphamide-induced liver-damage. METHODS: Here, we used P. ginseng (Korean Red Ginseng) compared to vitamin-E (natural antioxidant) in combating CPh-induced liver damage. Forty-eight albino rats were divided into 6 groups, Control, Ginseng, Vitamin E, Cyclophosphamide (CPh), CPh + Ginseng or CPh + Vitamin-E. Blood samples were taken for biochemical analyses and liver samples were collected for histopathology, oxidative stress evaluation, and gene expression analyses. RESULTS: In CPh group, typical CPh-liver damage was evident (higher levels of AST, ALT, ALP; lower albumin and total proteins levels; lower liver tissue concentrations of SOD, GPX and CAT and higher MDA; injured liver histopathological picture; and finally increased TNF-α, IL-1ß and Caspase3 and decreased BCL-2 genes expression). All these were abolished with either P. ginseng or vitamin-E administration. However, P. ginseng was overall superior to vitamin-E, especially in restoring blood biochemical findings and damaged histopathological picture. CONCLUSIONS: Therefore, P. ginseng is a potent hepatoprotector (vitamin-E to a lesser extent) and should be considered where liver damage is expected secondary to damaging medications; as cyclophosphamide.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Ciclofosfamida/efectos adversos , Hígado/efectos de los fármacos , Panax/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Vitamina E/farmacología , Animales , Antioxidantes/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Interleucina-1beta/metabolismo , Hígado/metabolismo , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/química , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
20.
Biomed Pharmacother ; 114: 108732, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30925457

RESUMEN

Pretreatment of mesenchymal stem cells (MSCs) with melatonin (Mel) improves their potential therapeutic effect on chronic diseases and cancers. However, this preconditioning strategy may direct the effect of Mel toward MSCs alone and deprive cancer cells of the oncostatic effect of Mel. Herein, we hypothesized that Mel given before transplantation of non-preconditioned MSCs may maximize the therapeutic outcome via the oncostatic effect of Mel by preparing a suitable tumor microenvironment for MSCs. Female rats (n = 60) were equally divided into 6 groups; normal control, diethylnitrosamine (DEN), DEN + Mel, DEN + MSCs, DEN + MSCs preconditioned with Mel, and DEN + MSCs + Mel. The obtained data revealed that administration of Mel before MSCs treatment without preconditioning yielded a better ameliorative effect against DEN-induced hepatocellular carcinoma (HCC) as evidenced by: 1) reduced serum levels of alpha fetoprotein and gamma-glutamyl transferase; 2) decreased number and area of glutathione S-transferase placental positive foci; 3) induced apoptosis (as indicated by increased cleaved caspase-3 activity, upregulated expression of proapoptotic genes Bax and caspase 3 and downregulated expression of anti-apoptotic genes Bcl2, survivin); 4) decreased malondialdehyde level and increased activities of superoxide dismutase, catalase, and glutathione peroxidase enzymes; and 5) reduced inflammation, angiogenesis and metastasis as indicated by downregulated expression of interleukin 1 beta, nuclear factor kappa B, vascular endothelial growth factor, and matrix metallopeptidase 9 genes and upregulated expression of metalloproteinase inhibitor 1 gene. Thus, administration of Mel before MSCs (without preconditioning) fostered the survival and therapeutic potential of MSCs in HCC, possibly through induction of apoptosis and inhibition of inflammation and oxidative stress. This new strategy showed better therapeutic outcomes and may improve MSC-based therapies for HCC.


Asunto(s)
Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Dietilnitrosamina/farmacología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Melatonina/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Femenino , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Regulación hacia Arriba/efectos de los fármacos , alfa-Fetoproteínas/metabolismo , gamma-Glutamiltransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...