RESUMEN
CISD-1/mitoNEET is an evolutionarily conserved outer mitochondrial membrane [2Fe-2S] protein that regulates mitochondrial function and morphology. The [2Fe-2S] clusters are redox reactive and shown to mediate oxidative stress in vitro and in vivo. However, there is limited research studying CISD-1/mitoNEET mediation of oxidative stress in response to environmental stressors. In this study, we have determined the X-ray crystal structure of Caenorhabditis elegans CISD-1/mitoNEET homologue and evaluated the mechanisms of oxidative stress resistance to the pro-oxidant paraquat in age-synchronized populations by generating C. elegans gain and loss of function CISD-1 models. The structure of the C. elegans CISD-1/mitoNEET soluble domain refined at 1.70-Å resolution uniquely shows a reversible disulfide linkage at the homo-dimeric interface and also represents the N-terminal tail domain for dimerization of the cognate kinesin motor protein KLP-17 involved in chromosome segregation dynamics and germline development of the nematode. Moreover, overexpression of CISD-1/mitoNEET in C. elegans has revealed beneficial effects on oxidative stress resistance against paraquat-induced reactive oxygen species generation, corroborated by increased activation of the p38 mitogen-activated protein kinase (MAPK) signaling cascade.