Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2403885, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739417

RESUMEN

Low-melting liquid metals are emerging as a new group of highly functional solvents due to their capability to dissolve and alloy various metals in their elemental state to form solutions as well as colloidal systems. Furthermore, these liquid metals can facilitate and catalyze multiple unique chemical reactions. Despite the intriguing science behind liquid metals and alloys, very little is known about their fundamental structures in the nanometric regime. To bridge this gap, this work employs small angle neutron scattering and molecular dynamics simulations, revealing that the most commonly used liquid metal solvents, EGaIn and Galinstan, are surprisingly structured with the formation of clusters ranging from 157 to 15.7 Å. Conversely, noneutectic liquid metal alloys of GaSn or GaIn at low solute concentrations of 1, 2, and 5 wt%, as well as pure Ga, do not exhibit these structures. Importantly, the eutectic alloys retain their structure even at elevated temperatures of 60 and 90 °C, highlighting that they are not just simple homogeneous fluids consisting of individual atoms. Understanding the complex soft structure of liquid alloys will assist in comprehending complex phenomena occurring within these fluids and contribute to deriving reaction mechanisms in the realm of synthesis and liquid metal-based catalysis.

2.
Adv Sci (Weinh) ; : e2400147, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704677

RESUMEN

Crystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state. This effect, referred to herein as crystal interface liquefaction, is observed at remarkably low temperatures and results in highly unstable crystal interfaces at temperatures exceeding 200 K below the bulk melting point of the solid. In general, any liquefaction process would occur at or close to the formal melting point of a solid, thus differentiating the observed liquefaction phenomenon from other processes such as surface pre-melting or conventional bulk melting. Crystal interface liquefaction is observed in a variety of binary alloy systems and as such, the findings may impact the understanding of crystallization and solidification processes in metallic systems and alloys more generally.

3.
Mater Today Bio ; 26: 101069, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38765246

RESUMEN

The urgency to address skeletal abnormalities and diseases through innovative approaches has led to a significant interdisciplinary convergence of engineering, 3D printing, and design in developing individualised bioceramic bioscaffolds. This review explores into the recent advancements and future trajectory of non-antibiotic antibacterial bioceramics in bone tissue engineering, an importance given the escalating challenges of orthopaedic infections, antibiotic resistance, and emergent pathogens. Initially, the review provides an in-depth exploration of the complex interactions among bacteria, immune cells, and bioceramics in clinical contexts, highlighting the multifaceted nature of infection dynamics, including protein adsorption, immunological responses, bacterial adherence, and endotoxin release. Then, focus on the next-generation bioceramics designed to offer multifunctionality, especially in delivering antibacterial properties independent of traditional antibiotics. A key highlight of this study is the exploration of smart antibacterial bioceramics, marking a revolutionary stride in medical implant technology. The review also aims to guide the ongoing development and clinical adoption of bioceramic materials, focusing on their dual capabilities in promoting bone regeneration and exhibiting antibacterial properties. These next-generation bioceramics represent a paradigm shift in medical implant technology, offering multifunctional benefits that transcend traditional approaches.

4.
Sci Rep ; 14(1): 8587, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615147

RESUMEN

Helicobacter pylori infects approximately half the human population and has an unusual infective niche of the human stomach. Helicobacter pylori is a major cause of gastritis and has been classified as a group 1 carcinogen by the WHO. Treatment involves triple or quadruple antibiotic therapy, but antibiotic resistance is becoming increasingly prevalent. Helicobacter pylori expresses certain blood group related antigens (Lewis system) as a part of its lipopolysaccharide (LPS), which is thought to assist in immune evasion. Additionally, H. pylori LPS participates in adhesion to host cells alongside several adhesion proteins. This study profiled the carbohydrates of H. pylori reference strains (SS1 and 26695) using monoclonal antibodies (mAbs) and lectins, identifying interactions between two carbohydrate-targeting mAbs and multiple lectins. Atomic force microscopy (AFM) scans were used to probe lectin and antibody interactions with the bacterial surfaces. The selected mAb and lectins displayed an increased adhesive force over the surface of the curved H. pylori rods. Furthermore, this study demonstrates the ability of anti-carbohydrate antibodies to reduce the adhesion of H. pylori 26695 to human gastric adenocarcinoma cells via AFM. Targeting bacterial carbohydrates to disrupt crucial adhesion and immune evasion mechanisms represents a promising strategy for combating H. pylori infection.


Asunto(s)
Antígenos de Grupos Sanguíneos , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Lipopolisacáridos , Polisacáridos , Anticuerpos Monoclonales , Lectinas
5.
ACS Appl Bio Mater ; 7(3): 1429-1434, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38445589

RESUMEN

Gel-based wound dressings have gained popularity within the healthcare industry for the prevention and treatment of bacterial and fungal infections. Gels based on deep eutectic solvents (DESs), known as eutectogels, provide a promising alternative to hydrogels as they are non-volatile and highly tunable and can solubilize therapeutic agents, including those insoluble in hydrogels. A choline chloride:glycerol-cellulose eutectogel was loaded with numerous antimicrobial agents including silver nanoparticles, black phosphorus nanoflakes, and commercially available pharmaceuticals (octenidine dihydrochloride, tetracycline hydrochloride, and fluconazole). The eutectogels caused >97% growth reduction in Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacteria and the fungal species Candida albicans.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Solventes , Disolventes Eutécticos Profundos , Plata/farmacología , Antiinfecciosos/farmacología , Hidrogeles
6.
J Phys Chem B ; 128(10): 2504-2515, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38416751

RESUMEN

Ionic liquids (ILs) are a diverse class of solvents which can be selected for task-specific properties, making them attractive alternatives to traditional solvents. To tailor ILs for specific biological applications, it is necessary to understand the structure-property relationships of ILs and their interactions with cells. Here, a selection of carboxylate anion-based ILs were investigated as cryoprotectants, which are compounds added to cells before freezing to mitigate lethal freezing damage. The cytotoxicity, cell permeability, thermal behavior, and cryoprotective efficacy of the ILs were assessed with two model mammalian cell lines. We found that the biophysical interactions, including permeability of the ILs, were influenced by considering the IL pair together, rather than as single species acting independently. All of the ILs tested had high cytotoxicity, but ethylammonium acetate demonstrated good cryoprotective efficacy for both cell types tested. These results demonstrate that despite toxicity, ILs may be suitable for certain biological applications. It also demonstrates that more research is required to understand the contribution of ion pairs to structure-property relationships and that knowing the behavior of a single ionic species will not necessarily predict its behavior as part of an IL.


Asunto(s)
Líquidos Iónicos , Animales , Líquidos Iónicos/toxicidad , Solventes , Aniones , Iones , Criopreservación , Mamíferos
7.
ACS Appl Mater Interfaces ; 16(1): 332-341, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38111109

RESUMEN

The rise of antibiotic resistance in pathogenic bacteria requires new therapeutics to be developed. Several metallic nanoparticles such as those made from silver, copper, and zinc have shown significant antibacterial activity, in part due to metal ion leaching. Ga3+ containing compounds have also been shown to have antibacterial properties. Accordingly, it is estimated that metallic Ga droplets may be antibacterial, and some studies to date have confirmed this. Here, multiple concentrations of Ga droplets were tested against the antibiotic resistant Gram-positive bacteria methicillin-resistantStaphylococcus aureus (MRSA) and the Gram-negative bacteria Pseudomonas aeruginosa (P. aeruginosa) Despite a high concentration (2 mg/mL), Ga droplets had only modest antibacterial activity against both bacteria after 24 h of interaction. Finally, we demonstrated that Ga droplets were easily functionalized through a galvanic replacement reaction to develop antibacterial particles with copper and silver demonstrating a total detectable reduction of MRSA and >96% reduction ofP. aeruginosa. Altogether, these results contradict previous literature and show that Ga droplets demonstrate no antibacterial activity at concentrations comparable to those of conventional antibiotics and well-established antibacterial nanomaterials and only modest antibacterial activity at very high concentrations. However, we demonstrate that their antibacterial activity can be easily enhanced by functionalization.


Asunto(s)
Galio , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Plata/farmacología , Galio/farmacología , Cobre/farmacología , Antibacterianos/farmacología , Meticilina , Bacterias , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
8.
ACS Appl Mater Interfaces ; 16(1): 44-53, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38157306

RESUMEN

Extracellular nanovesicles (EVs) are lipid-based vesicles secreted by cells and are present in all bodily fluids. They play a central role in communication between distant cells and have been proposed as potential indicators for the early detection of a wide range of diseases, including different types of cancer. However, reliable quantification of a specific subpopulation of EVs remains challenging. The process is typically lengthy and costly and requires purification of relatively large quantities of biopsy samples. Here, we show that microcantilevers operated with sufficiently small vibration amplitudes can successfully quantify a specific subpopulation of EVs directly from a drop (0.1 mL) of unprocessed saliva in less than 20 min. Being a complex fluid, saliva is highly non-Newtonian, normally precluding mechanical sensing. With a combination of standard rheology and microrheology, we demonstrate that the non-Newtonian properties are scale-dependent, enabling microcantilever measurements with a sensitivity identical to that in pure water when operating at the nanoscale. We also address the problem of unwanted sensor biofouling by using a zwitterionic coating, allowing efficient quantification of EVs at concentrations down to 0.1 µg/mL, based on immunorecognition of the EVs' surface proteins. We benchmark the technique on model EVs and illustrate its potential by quantifying populations of natural EVs commonly present in human saliva. The method effectively bypasses the difficulty of targeted detection in non-Newtonian fluids and could be used for various applications, from the detection of EVs and viruses in bodily fluids to the detection of molecular clusters or nanoparticles in other complex fluids.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Saliva , Neoplasias/metabolismo
9.
ACS Appl Bio Mater ; 7(1): 344-361, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100088

RESUMEN

Naturally occurring and synthetic nanostructured surfaces have been widely reported to resist microbial colonization. The majority of these studies have shown that both bacterial and fungal cells are killed upon contact and subsequent surface adhesion to such surfaces. This occurs because the presence of high-aspect-ratio structures can initiate a self-driven mechanical rupture of microbial cells during the surface adsorption process. While this technology has received a large amount of scientific and medical interest, one important question still remains: what factors drive microbial death on the surface? In this work, the interplay between microbial-surface adhesion, cell elasticity, cell membrane rupture forces, and cell lysis at the microbial-nanostructure biointerface during adsorptive processes was assessed using a combination of live confocal laser scanning microscopy, scanning electron microscopy, in situ amplitude atomic force microscopy, and single-cell force spectroscopy. Specifically, the adsorptive behavior and nanomechanical properties of live Gram-negative (Pseudomonas aeruginosa) and Gram-positive (methicillin-resistant Staphylococcus aureus) bacterial cells, as well as the fungal species Candida albicans and Cryptococcus neoformans, were assessed on unmodified and nanostructured titanium surfaces. Unmodified titanium and titanium surfaces with nanostructures were used as model substrates for investigation. For all microbial species, cell elasticity, rupture force, maximum cell-surface adhesion force, the work of adhesion, and the cell-surface tether behavior were compared to the relative cell death observed for each surface examined. For cells with a lower elastic modulus, lower force to rupture through the cell, and higher work of adhesion, the surfaces had a higher antimicrobial activity, supporting the proposed biocidal mode of action for nanostructured surfaces. This study provides direct quantification of the differences observed in the efficacy of nanostructured antimicrobial surface as a function of microbial species indicating that a universal, antimicrobial surface architecture may be hard to achieve.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Nanoestructuras , Adhesión Celular , Titanio/farmacología , Titanio/química , Adhesión Bacteriana , Nanoestructuras/química , Antiinfecciosos/farmacología , Elasticidad
10.
J Mater Chem B ; 11(29): 6868-6880, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37403522

RESUMEN

Deep eutectic solvents (DES) are tailorable non-aqueous solvents with promising properties for a range of applications, from industrial dissolution of plant products to biomedicine. They are mixtures of hydrogen bond donors and acceptors with low melting points that can be tailored to specific applications, and many support the self-assembly of amphiphilic molecules into lyotropic liquid crystal phases. Self-assembled lipid structures have potential for numerous applications, including drug delivery. These ordered structures can act as carriers, slow-release vehicles, or microreactors. Lipid self-assembly in non-aqueous solvents, such as deep eutectic solvents, is important for applications at extreme temperatures, or involving water-insoluble or water sensitive components. However, lipid self-assembly in these solvents remains largely unexplored. In this paper, we have examined the self-assembly of phytantriol, a non-ionic lipid, at 10 and 30 wt% in the deep eutectic solvent choline chloride:urea, with and without water. Self-assembly was assessed using small angle X-ray scattering and cross polarised optical microscopy at temperatures from 25-66 °C. We found that pure choline chloride:urea supports a Pn3m cubic phase similar to that formed in water. However, mixtures of the DES with water resulted in phytantriol forming an inverse hexagonal phase and influenced the phase transition temperatures. These results demonstrate that choline chloride:urea can support diverse phase behaviour, and also provides a mechanism for tailoring the phase for particular applications simply by controlling the amount of water in the solvent. In the future this could lead to methods of triggered release of drugs and biomolecules by the simple addition of water which could be critical for drug delivery applications.


Asunto(s)
Colina , Urea , Urea/química , Colina/química , Disolventes Eutécticos Profundos , Solventes/química , Alcoholes Grasos/química
11.
Front Microbiol ; 14: 1065609, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37350788

RESUMEN

The development of virus-like particle (VLP) based vaccines for human papillomavirus, hepatitis B and hepatitis E viruses represented a breakthrough in vaccine development. However, for dengue and COVID-19, technical complications, such as an incomplete understanding of the requirements for protective immunity, but also limitations in processes to manufacture VLP vaccines for enveloped viruses to large scale, have hampered VLP vaccine development. Selecting the right adjuvant is also an important consideration to ensure that a VLP vaccine induces protective antibody and T cell responses. For diseases like COVID-19 and dengue fever caused by RNA viruses that exist as families of viral variants with the potential to escape vaccine-induced immunity, the development of more efficacious vaccines is also necessary. Here, we describe the development and characterisation of novel VLP vaccine candidates using SARS-CoV-2 and dengue virus (DENV), containing the major viral structural proteins, as protypes for a novel approach to produce VLP vaccines. The VLPs were characterised by Western immunoblot, enzyme immunoassay, electron and atomic force microscopy, and in vitro and in vivo immunogenicity studies. Microscopy techniques showed proteins self-assemble to form VLPs authentic to native viruses. The inclusion of the glycolipid adjuvant, α-galactosylceramide (α-GalCer) in the vaccine formulation led to high levels of natural killer T (NKT) cell stimulation in vitro, and strong antibody and memory CD8+ T cell responses in vivo, demonstrated with SARS-CoV-2, hepatitis C virus (HCV) and DEN VLPs. This study shows our unique vaccine formulation presents a promising, and much needed, new vaccine platform in the fight against infections caused by enveloped RNA viruses.

12.
J Colloid Interface Sci ; 638: 719-732, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36774881

RESUMEN

The maintenance of plasma membrane structure is vital for the viability of cells. Disruption of this structure can lead to cell death. One important example is the macroscopic phase separation observed during dehydration associated with desiccation and freezing, often leading to loss of permeability and cell death. It has previously been shown that the hybrid lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) can act as a line-active component in ternary lipid systems, inhibiting macroscopic phase separation and stabilising membrane microdomains in lipid vesicles [1]. The domain size is found to decrease with increasing POPC concentration until complete mixing is observed. However, no such studies have been carried out at reduced hydration. To examine if this phase separation is unique to vesicles in excess water, we have conducted studies on several binary and ternary model membrane systems at both reduced hydration ("powder" type samples and oriented membrane stacks) and in excess water (supported lipid bilayers) at 0.2 mol fraction POPC, in the range where microdomain stabilisation is reported. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) are used to map phase transition temperatures, with X-ray and neutron scattering providing details of the changes in lipid packing and phase information within these boundaries. Atomic force microscopy (AFM) is used to image bilayers on a substrate in excess water. In all cases, macroscopic phase separation was observed rather than microdomain formation at this molar ratio. Thus POPC does not stabilise microdomains under these conditions, regardless of the type of model membrane, hydration or temperature. Thus we conclude that the driving force for separation under these conditions overcomes any linactant effects of the hybrid lipid.


Asunto(s)
Membrana Dobles de Lípidos , Fosfatidilcolinas , Fosfatidilcolinas/química , Membrana Dobles de Lípidos/química , Transición de Fase , Agua
13.
Biomater Sci ; 11(3): 822-827, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36625156

RESUMEN

The elasticity of nanoparticles plays a critical role in regulating nanoparticle-biosystem interactions. However, the elasticity of traditional organic-based carriers can only be regulated within a narrow range, and the effects of elasticity on in vivo biological processes have not been evaluated until now. Here, we construct hyaluronic acid modified mesoporous organosilica nanoparticles (MONs-HA) with a wide range of elasticity by an interior preferential etching approach and investigate the impact of their elasticity on in vitro cellular uptake, in vivo blood circulation, and tumor accumulation. The Young's moduli of the prepared MONs-HA are 1.64, 0.93, 0.78, 0.4 and 0.29 GPa (denoted as rigid MONs0-HA, semi-elastic MONs20-HA and MONs50-HA, elastic MONs100-HA and MONs200-HA), respectively. They all possess a similar hydrodynamic size (245-257 nm), similar surface electronegativity (-27 to -35 mV), and excellent dispersibility. In vitro experiments demonstrate that the elastic MONs100-HA and MONs200-HA (0.4 and 0.29 GPa) exhibit significantly greater cellular uptake relative to semi-elastic MONs20-HA and MONs50-HA (0.93 and 0.78 GPa) or rigid MONs0-HA (1.64 GPa). Simultaneously, these elastic MONs100-HA and MONs200-HA show an efficiently prolonged circulation time. In vivo results revealed that the elastic MONs100-HA show enhanced tumor accumulation compared to semi-elastic and rigid MONs-HA after intravenous administration. These desirable features of elasticity can direct the design of nanoplatforms, leading to an enhanced tumor delivery efficiency.


Asunto(s)
Nanocápsulas , Nanopartículas , Humanos , Elasticidad , Línea Celular Tumoral , Células MCF-7 , Ácido Hialurónico
14.
J Colloid Interface Sci ; 628(Pt B): 1049-1060, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36049281

RESUMEN

HYPOTHESIS: Titanium and its alloys are commonly used implant materials. Once inserted into the body, the interface of the biomaterials is the most likely site for the development of implant-associated infections. Imparting the titanium substrate with high-aspect-ratio nanostructures, which can be uniformly achieved using hydrothermal etching, enables a mechanical contact-killing (mechanoresponsive) mechanism of bacterial and fungal cells. Interaction between cells and the surface shows cellular inactivation via a physical mechanism meaning that careful engineering of the interface is needed to optimse the technology. This mechanism of action is only effective towards surface adsorbed microbes, thus any cells not directly in contact with the substrate will survive and limit the antimicrobial efficacy of the titanium nanostructures. Therefore, we propose that a dual-action mechanoresponsive and chemical-surface approach must be utilised to improve antimicrobial activity. The addition of antimicrobial silver nanoparticles will provide a secondary, chemical mechanism to escalate the microbial response in tandem with the physical puncture of the cells. EXPERIMENTS: Hydrothermal etching is used as a facile method to impart variant nanostrucutres on the titanium substrate to increase the antimicrobial response. Increasing concentrations (0.25 M, 0.50 M, 1.0 M, 2.0 M) of sodium hydroxide etching solution were used to provide differing degrees of nanostructured morphology on the surface after 3 h of heating at 150 °C. This produced titanium nanospikes, nanoblades, and nanowires, respectively, as a function of etchant concentration. These substrates then provided an interface for the deposition of silver nanoparticles via a reduction pathway. Methicillin-resistant Staphylococcous aureus (MRSA) and Candida auris (C. auris) were used as model bacteria and fungi, respectively, to test the effectiveness of the nanostructured titanium with and without silver nanoparticles, and the bio-interactions at the interface. FINDINGS: The presence of nanostructure increased the bactericidal response of titanium against MRSA from âˆ¼ 10 % on commercially pure titanium to a maximum of âˆ¼ 60 % and increased the fungicidal response from âˆ¼ 10 % to âˆ¼ 70 % in C. auris. Introducing silver nanoparticles increased the microbiocidal response to âˆ¼ 99 % towards both bacteria and fungi. Importantly, this study highlights that nanostructure alone is not sufficient to develop a highly antimicrobial titanium substrate. A dual-action, physical and chemical antimicrobial approach is better suited to produce highly effective antibacterial and antifungal surface technologies.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanoestructuras , Plata/farmacología , Plata/química , Titanio/farmacología , Titanio/química , Nanopartículas del Metal/química , Antifúngicos/farmacología , Hidróxido de Sodio , Nanoestructuras/química , Bacterias , Antibacterianos/farmacología , Antibacterianos/química , Aleaciones/farmacología , Antiinfecciosos/farmacología , Materiales Biocompatibles/farmacología
15.
Biomolecules ; 12(9)2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36139131

RESUMEN

The environmental control of microbial pathogens currently relies on compounds that do not exert long-lasting activity on surfaces, are impaired by soil, and contribute to the growing problem of antimicrobial resistance. This study presents the scientific development and characterization of GS-2, a novel, water-soluble ammonium carboxylate salt of capric acid and L-arginine that demonstrates activity against a range of bacteria (particularly Gram-negative bacteria), fungi, and viruses. In real-world surface testing, GS-2 was more effective than a benzalkonium chloride disinfectant at reducing the bacterial load on common touch-point surfaces in a high-traffic building (average 1.6 vs. 32.6 CFUs recovered from surfaces 90 min after application, respectively). Toxicology testing in rats confirmed GS-2 ingredients were rapidly cleared and posed no toxicities to humans or animals. To enhance the time-kill against Gram-positive bacteria, GS-2 was compounded at a specific ratio with a naturally occurring monoterpenoid, thymol, to produce a water-based antimicrobial solution. This GS-2 with thymol formulation could generate a bactericidal effect after five minutes of exposure and a viricidal effect after 10 min of exposure. Further testing of the GS-2 and thymol combination on glass slides demonstrated that the compound retained bactericidal activity for up to 60 days. Based on these results, GS-2 and GS-2 with thymol represent a novel antimicrobial solution that may have significant utility in the long-term reduction of environmental microbial pathogens in a variety of settings.


Asunto(s)
Compuestos de Amonio , Antiinfecciosos , Desinfectantes , Animales , Antibacterianos/farmacología , Arginina , Compuestos de Benzalconio/farmacología , Desinfectantes/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Monoterpenos , Ratas , Suelo , Timol , Agua
16.
ACS Nano ; 16(10): 17179-17196, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36121776

RESUMEN

Nanomaterials have the potential to transform biological and biomedical research, with applications ranging from drug delivery and diagnostics to targeted interference of specific biological processes. Most existing research is aimed at developing nanomaterials for specific tasks such as enhanced biocellular internalization. However, fundamental aspects of the interactions between nanomaterials and biological systems, in particular, membranes, remain poorly understood. In this study, we provide detailed insights into the molecular mechanisms governing the interaction and evolution of one of the most common synthetic nanomaterials in contact with model phospholipid membranes. Using a combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations, we elucidate the precise mechanisms by which citrate-capped 5 nm gold nanoparticles (AuNPs) interact with supported lipid bilayers (SLBs) of pure fluid (DOPC) and pure gel-phase (DPPC) phospholipids. On fluid-phase DOPC membranes, the AuNPs adsorb and are progressively internalized as the citrate capping of the NPs is displaced by the surrounding lipids. AuNPs also interact with gel-phase DPPC membranes where they partially embed into the outer leaflet, locally disturbing the lipid organization. In both systems, the AuNPs cause holistic perturbations throughout the bilayers. AFM shows that the lateral diffusion of the particles is several orders of magnitude smaller than that of the lipid molecules, which creates some temporary scarring of the membrane surface. Our results reveal how functionalized AuNPs interact with differing biological membranes with mechanisms that could also have implications for cooperative membrane effects with other molecules.


Asunto(s)
Oro , Nanopartículas del Metal , Membrana Dobles de Lípidos , Ácido Cítrico , Fosfolípidos , Microscopía de Fuerza Atómica
17.
J Mater Chem B ; 10(24): 4546-4560, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35670530

RESUMEN

Cryopreservation has facilitated numerous breakthroughs including assisted reproductive technology, stem cell therapies, and species preservation. Successful cryopreservation requires the addition of cryoprotective agents to protect against freezing damage and dehydration. For decades, cryopreservation has largely relied on the same two primary agents: dimethylsulfoxide and glycerol. However, both of these are toxic which limits their use for cells destined for clinical applications. Furthermore, these two agents are ineffective for hundreds of cell types, and organ and tissue preservation has not been achieved. The research presented here shows that deep eutectic solvents can be used as cryoprotectants. Six deep eutectic solvents were explored for their cryoprotective capacity towards mammalian cells. The solvents were tested for their thermal properties, including glass transitions, toxicity, and permeability into mammalian cells. A deep eutectic solvent made from proline and glycerol was an effective cryoprotective agent for all four cell types tested, even with extended incubation prior to freezing. This deep eutectic solvent was more effective and less toxic than its individual components, highlighting the importance of multi-component systems. Cells were characterised post-thawing using atomic force microscopy and confocal microscopy. Molecular dynamics simulations support the biophysical parameters obtained by experimentation. This is one of the first times that this class of solvents has been systematically tested for cryopreservation of mammalian cells and as such this research opens the way for the development of potentially thousands of new cryoprotective agents that can be tailored to specific cell types. The demonstrated capacity of cells to be incubated with the deep eutectic solvent at 37 °C for hours prior to freezing without significant loss of viability is a major step toward the storage of organs and tissues.


Asunto(s)
Crioprotectores , Disolventes Eutécticos Profundos , Animales , Criopreservación , Crioprotectores/farmacología , Glicerol/farmacología , Mamíferos , Solventes
18.
Nanoscale ; 14(18): 6802-6810, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35471407

RESUMEN

Gas-liquid reaction phenomena on liquid-metal solvents can be used to form intriguing 2D materials with large lateral dimensions, where the free energies of formation determine the final product. A vast selection of elements can be incorporated into the liquid metal-based nanostructures, offering a versatile platform for fabricating novel optoelectronic devices. While conventional doping techniques of semiconductors present several challenges for 2D materials. Liquid metals provide a facile route for obtaining doped 2D semiconductors. In this work, we successfully demonstrate that the doping of 2D SnS can be realized in a glove box containing a diluted H2S gas. Low melting point elements such as Bi and In are alloyed with base liquid Sn in varying concentrations, resulting in the doping of 2D SnS layers incorporating Bi and In sulphides. Optoelectronic properties for photodetectors and piezoelectronics can be fine-tuned through the controlled introduction of selective migration doping. The structural modification of 2D SnS results in a 22.6% enhancement of the d11 piezoelectric coefficient. In addition, photodetector response times have increased by several orders of magnitude. Doping methods using liquid metals have significantly changed the photodiode and piezoelectric device performances, providing a powerful approach to tune optoelectronic device outputs.

19.
Chem Soc Rev ; 51(4): 1253-1276, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35107468

RESUMEN

The surfaces of liquid metals can serve as a platform to synthesise two-dimensional materials. By exploiting the self-limiting Cabrera-Mott oxidation reaction that takes place at the surface of liquid metals exposed to ambient air, an ultrathin oxide layer can be synthesised and isolated. Several synthesis approaches based on this phenomenon have been developed in recent years, resulting in a diverse family of functional 2D materials that covers a significant fraction of the periodic table. These straightforward and inherently scalable techniques may enable the fabrication of novel devices and thus harbour significant application potential. This review provides a brief introduction to liquid metals and their alloys, followed by detailed guidance on each developed synthesis technique, post-growth processing methods, integration processes, as well as potential applications of the developed materials.

20.
J Mater Chem B ; 10(37): 7527-7539, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35024716

RESUMEN

In the fight against drug-resistant pathogenic bacterial and fungal cells, low-dimensional materials are emerging as a promising alternative treatment method. Specifically, few-layer black phosphorus (BP) has demonstrated its effectiveness against a wide range of pathogenic bacterial and fungal cells with studies suggesting low cytotoxicity towards healthy mammalian cells. However, the antimicrobial mechanism of action of BP is not well understood. Before new applications for this material can be realised, further in-depth investigations are required. In this work, the biochemical interaction between BP and a series of microbial cells is investigated using a variety of microscopy and spectroscopy techniques to provide a greater understanding of the antimicrobial mechanism. Synchrotron macro-attenuated total reflection-Fourier transform infrared (ATR-FTIR) micro-spectroscopy is used to elucidate the chemical changes occurring outside and within the cell of interest after exposure to BP nanoflakes. The ATR-FTIR data, coupled with high-resolution microscopy, reveals major physical and bio-chemical changes to the phospholipids and amide I and II proteins, as well as minor chemical changes to the structural polysaccharides and nucleic acids when compared to untreated cells. These changes can be attributed to the physical interaction of the BP nanoflakes with the cell membranes, combined with the oxidative stress induced by the degradation of the BP nanoflakes. This study provides insight into the biochemical interaction of BP nanoflakes with microbial cells, allowing for a better understanding of the antimicrobial mechanism of action that will be important for the next generation of applications such as implant coatings, wound dressings, or medical surfaces.


Asunto(s)
Antiinfecciosos , Ácidos Nucleicos , Amidas , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Análisis de Fourier , Mamíferos , Fósforo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sincrotrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...