Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5426, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926343

RESUMEN

Zika and dengue virus nonstructural protein 5 antagonism of STAT2, a critical interferon signaling transcription factor, to suppress the host interferon response is required for viremia and pathogenesis in a vertebrate host. This affects viral species tropism, as mouse STAT2 resistance renders only immunocompromised or humanized STAT2 mice infectable. Here, we explore how STAT2 evolution impacts antagonism. By measuring the susceptibility of 38 diverse STAT2 proteins, we demonstrate that resistance arose numerous times in mammalian evolution. In four species, resistance requires distinct sets of multiple amino acid changes that often individually disrupt STAT2 signaling. This reflects an evolutionary ridge where progressive resistance is balanced by the need to maintain STAT2 function. Furthermore, resistance may come with a fitness cost, as resistance that arose early in lemur evolution was subsequently lost in some lemur lineages. These findings underscore that while it is possible to evolve resistance to antagonism, complex evolutionary trajectories are required to avoid detrimental host fitness consequences.


Asunto(s)
Evolución Molecular , Factor de Transcripción STAT2 , Proteínas no Estructurales Virales , Factor de Transcripción STAT2/metabolismo , Factor de Transcripción STAT2/genética , Animales , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Humanos , Ratones , Virus del Dengue/genética , Virus del Dengue/fisiología , Virus Zika/genética , Flavivirus/genética , Flavivirus/fisiología , Filogenia , Interacciones Huésped-Patógeno/genética
2.
PLoS Biol ; 22(5): e3002606, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814944

RESUMEN

Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metatranscriptomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Cohousing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.


Asunto(s)
Pez Cebra , Animales , Pez Cebra/virología , Pez Cebra/microbiología , Enfermedades de los Peces/virología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/transmisión , Mascotas/virología , Mascotas/microbiología , Animales de Laboratorio/virología , Animales de Laboratorio/microbiología , Acuicultura
3.
Proc Natl Acad Sci U S A ; 121(5): e2312691121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38277437

RESUMEN

Phosphodiesterases (PDEs) encoded by viruses are putatively acquired by horizontal transfer of cellular PDE ancestor genes. Viral PDEs inhibit the OAS-RNase L antiviral pathway, a key effector component of the innate immune response. Although the function of these proteins is well-characterized, the origins of these gene acquisitions are less clear. Phylogenetic analysis revealed at least five independent PDE acquisition events by ancestral viruses. We found evidence that PDE-encoding genes were horizontally transferred between coronaviruses belonging to different genera. Three clades of viruses within Nidovirales: merbecoviruses (MERS-CoV), embecoviruses (HCoV-OC43), and toroviruses encode independently acquired PDEs, and a clade of rodent alphacoronaviruses acquired an embecovirus PDE via recent horizontal transfer. Among rotaviruses, the PDE of rotavirus A was acquired independently from rotavirus B and G PDEs, which share a common ancestor. Conserved motif analysis suggests a link between all viral PDEs and a similar ancestor among the mammalian AKAP7 proteins despite low levels of sequence conservation. Additionally, we used ancestral sequence reconstruction and structural modeling to reveal that sequence and structural divergence are not well-correlated among these proteins. Specifically, merbecovirus PDEs are as structurally divergent from the ancestral protein and the solved structure of human AKAP7 PDE as they are from each other. In contrast, comparisons of rotavirus B and G PDEs reveal virtually unchanged structures despite evidence for loss of function in one, suggesting impactful changes that lie outside conserved catalytic sites. These findings highlight the complex and volatile evolutionary history of viral PDEs and provide a framework to facilitate future studies.


Asunto(s)
Dietilestilbestrol/análogos & derivados , Endorribonucleasas , Coronavirus del Síndrome Respiratorio de Oriente Medio , Hidrolasas Diéster Fosfóricas , Rotavirus , Animales , Humanos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Filogenia , Mamíferos/metabolismo
4.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-37873270

RESUMEN

Coronaviruses exhibit many mechanisms of genetic innovation1-5, including the acquisition of accessory genes that originate by capture of cellular genes or through duplication of existing viral genes6,7. Accessory genes influence viral host range and cellular tropism, but little is known about how selection acts on these variable regions of virus genomes. We used experimental evolution of mouse hepatitis virus (MHV) encoding a cellular AKAP7 phosphodiesterase and an inactive native phosphodiesterase, NS2 (ref 8) to simulate the capture of a host gene and analyze its evolution. After courses of serial infection, the gene encoding inactive NS2, ORF2, unexpectedly remained intact, suggesting it is under cryptic constraint uncoupled from the function of NS2. In contrast, AKAP7 was retained under strong selection but rapidly lost under relaxed selection. Guided by the retention of ORF2 and similar patterns in related betacoronaviruses, we analyzed ORF8 of SARS-CoV-2, which arose via gene duplication6 and contains premature stop codons in several globally successful lineages. As with MHV ORF2, the coding-defective SARS-CoV-2 ORF8 gene remains largely intact, mirroring patterns observed during MHV experimental evolution, challenging assumptions on the dynamics of gene loss in virus genomes and extending these findings to viruses currently adapting to humans.

5.
Curr Biol ; 33(19): 4136-4149.e9, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37708888

RESUMEN

Pathogenic fungi populate a wide range of environments and infect a diversity of host species. Despite this substantial biological flexibility, the impact of interactions between fungi and their hosts on the evolution of pathogenicity remains unclear. We studied how repeated interactions between the fungus Cryptococcus neoformans and relevant environmental and mammalian host cells-amoeba and mouse macrophages-shape the evolution of this model fungal pathogen. First, using a collection of clinical and environmental isolates of C. neoformans, we characterized a range of survival phenotypes for these strains when exposed to host cells of different species. We then performed serial passages of an environmentally isolated C. neoformans strain through either amoeba or macrophages for ∼75 generations to observe how these interactions select for improved replication within hosts. In one adapted population, we identified a single point mutation in the adenylyl cyclase gene, CAC1, that swept to fixation and confers a strong competitive advantage for growth inside macrophages. Strikingly, this growth advantage in macrophages is inversely correlated with disease severity during mouse infections, suggesting that adaptation to specific host niches can markedly reduce the pathogenicity of these fungi. These results raise intriguing questions about the influence of cyclic AMP (cAMP) signaling on pathogenicity and highlight the role of seemingly small adaptive changes in promoting fundamental shifts in the intracellular behavior and virulence of these important human pathogens.

6.
bioRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693489

RESUMEN

Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metagenomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Co-housing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.

7.
bioRxiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37745432

RESUMEN

Phosphodiesterases (PDEs) encoded by viruses are putatively acquired by horizontal transfer of cellular PDE ancestor genes. Viral PDEs inhibit the OAS-RNase L antiviral pathway, a key effector component of the innate immune response. Although the function of these proteins is well-characterized, the origins of these gene acquisitions is less clear. Phylogenetic analysis revealed at least five independent PDE acquisition events by ancestral viruses. We found evidence that PDE-encoding genes were horizontally transferred between coronavirus genera. Three clades of viruses within Nidovirales: merbecoviruses (MERS-CoV), embecoviruses (OC43), and toroviruses encode independently acquired PDEs, and a clade of rodent alphacoronaviruses acquired an embecovirus PDE via recent horizontal transfer. Among rotaviruses, the PDE of Rotavirus A was acquired independently from Rotavirus B and G PDEs, which share a common ancestor. Conserved motif analysis suggests a link between all viral PDEs and a similar ancestor among the mammalian AKAP7 proteins despite low levels of sequence conservation. Additionally, we used ancestral sequence reconstruction and structural modeling to reveal that sequence and structural divergence are not well-correlated among these proteins. Specifically, merbecovirus PDEs are as structurally divergent from the ancestral protein and the solved structure of human AKAP7 PDE as they are from each other. In contrast, comparisons of Rotavirus B and G PDEs reveal virtually unchanged structures despite evidence for loss of function in one, suggesting impactful changes that lie outside conserved catalytic sites. These findings highlight the complex and volatile evolutionary history of viral PDEs and provide a framework to facilitate future studies.

8.
Cell Rep ; 42(8): 112878, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494187

RESUMEN

Viruses acquire host genes via horizontal transfer and can express them to manipulate host biology during infections. Some homologs retain sequence identity, but evolutionary divergence can obscure host origins. We use structural modeling to compare vaccinia virus proteins with metazoan proteomes. We identify vaccinia A47L as a homolog of gasdermins, the executioners of pyroptosis. An X-ray crystal structure of A47 confirms this homology, and cell-based assays reveal that A47 interferes with caspase function. We also identify vaccinia C1L as the product of a cryptic gene fusion event coupling a Bcl-2-related fold with a pyrin domain. C1 associates with components of the inflammasome, a cytosolic innate immune sensor involved in pyroptosis, yet paradoxically enhances inflammasome activity, suggesting differential modulation during infections. Our findings demonstrate the increasing power of structural homology screens to reveal proteins with unique combinations of domains that viruses capture from host genes and combine in unique ways.


Asunto(s)
Poxviridae , Vaccinia , Virus , Animales , Inflamasomas/metabolismo , Poxviridae/genética , Virus Vaccinia/metabolismo , Virus/metabolismo
9.
Genome Biol Evol ; 15(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37390614

RESUMEN

Detection of microbial pathogens is a primary function of many mammalian immune proteins. This is accomplished through the recognition of diverse microbial-produced macromolecules including proteins, nucleic acids, and carbohydrates. Pathogens subvert host defenses by rapidly changing these structures to avoid detection, placing strong selective pressures on host immune proteins that repeatedly adapt to remain effective. Signatures of rapid evolution have been identified in numerous immunity proteins involved in the detection of pathogenic protein substrates, but whether similar signals can be observed in host proteins engaged in interactions with other types of pathogen-derived molecules has received less attention. This focus on protein-protein interfaces has largely obscured the study of fungi as contributors to host-pathogen conflicts, despite their importance as a formidable class of vertebrate pathogens. Here, we provide evidence that mammalian immune receptors involved in the detection of microbial glycans have been subject to recurrent positive selection. We find that rapidly evolving sites in these genes cluster in key functional domains involved in carbohydrate recognition. Further, we identify convergent patterns of substitution and evidence for balancing selection in one particular gene, MelLec, which plays a critical role in controlling invasive fungal disease. Our results also highlight the power of evolutionary analyses to reveal uncharacterized interfaces of host-pathogen conflict by identifying genes, like CLEC12A, with strong signals of positive selection across mammalian lineages. These results suggest that the realm of interfaces shaped by host-microbe conflicts extends beyond the world of host-viral protein-protein interactions and into the world of microbial glycans and fungi.


Asunto(s)
Proteínas Portadoras , Evolución Molecular , Animales , Proteínas Portadoras/genética , Mamíferos/genética , Hongos/genética , Polisacáridos , Interacciones Huésped-Patógeno/genética
10.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36909515

RESUMEN

Viruses acquire host genes via horizontal gene transfer and can express them to manipulate host biology during infections. Some viral and host homologs retain sequence identity, but evolutionary divergence can obscure host origins. We used structural modeling to compare vaccinia virus proteins with metazoan proteomes. We identified vaccinia A47L as a homolog of gasdermins, the executioners of pyroptosis. An X-ray crystal structure of A47 confirmed this homology and cell-based assays revealed that A47 inhibits pyroptosis. We also identified vaccinia C1L as the product of a cryptic gene fusion event coupling a Bcl-2 related fold with a pyrin domain. C1 associates with components of the inflammasome, a cytosolic innate immune sensor involved in pyroptosis, yet paradoxically enhances inflammasome activity, suggesting a benefit to poxvirus replication in some circumstances. Our findings demonstrate the potential of structural homology screens to reveal genes that viruses capture from hosts and repurpose to benefit viral fitness.

11.
Genome Biol Evol ; 14(12)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36477201

RESUMEN

The ongoing SARS-CoV-2 pandemic is the third zoonotic coronavirus identified in the last 20 years. Enzootic and epizootic coronaviruses of diverse lineages also pose a significant threat to livestock, as most recently observed for virulent strains of porcine epidemic diarrhea virus (PEDV) and swine acute diarrhea-associated coronavirus (SADS-CoV). Unique to RNA viruses, coronaviruses encode a proofreading exonuclease (ExoN) that lowers point mutation rates to increase the viability of large RNA virus genomes, which comes with the cost of limiting virus adaptation via point mutation. This limitation can be overcome by high rates of recombination that facilitate rapid increases in genetic diversification. To compare the dynamics of recombination between related sequences, we developed an open-source computational workflow (IDPlot) that bundles nucleotide identity, recombination, and phylogenetic analysis into a single pipeline. We analyzed recombination dynamics among three groups of coronaviruses with noteworthy impacts on human health and agriculture: SARSr-CoV, Betacoronavirus-1, and SADSr-CoV. We found that all three groups undergo recombination with highly diverged viruses from undersampled or unsampled lineages, including in typically highly conserved regions of the genome. In several cases, no parental origin of recombinant regions could be found in genetic databases, demonstrating our shallow characterization of coronavirus diversity and expanding the genetic pool that may contribute to future zoonotic events. Our results also illustrate the limitations of current sampling approaches for anticipating zoonotic threats to human and animal health.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Filogenia , SARS-CoV-2/genética , Porcinos
12.
Sci Adv ; 8(47): eadd7540, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36417524

RESUMEN

Several bat species act as asymptomatic reservoirs for many viruses that are highly pathogenic in other mammals. Here, we have characterized the functional diversification of the protein kinase R (PKR), a major antiviral innate defense system. Our data indicate that PKR has evolved under positive selection and has undergone repeated genomic duplications in bats in contrast to all studied mammals that have a single copy of the gene. Functional testing of the relationship between PKR and poxvirus antagonists revealed how an evolutionary conflict with ancient pathogenic poxviruses has shaped a specific bat host-virus interface. We determined that duplicated PKRs of the Myotis species have undergone genetic diversification, allowing them to collectively escape from and enhance the control of DNA and RNA viruses. These findings suggest that viral-driven adaptations in PKR contribute to modern virus-bat interactions and may account for bat-specific immunity.

13.
Cell Host Microbe ; 30(11): 1499-1500, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36356562

RESUMEN

A recent paper in Cell reports the discovery of a receptor for simian hemorrhagic fever virus and suggests that it may be poised to spill over into humans. This study highlights the importance of devoting resources to currently obscure animal viruses that may pose a threat to human health.


Asunto(s)
Hominidae , Virus , Animales , Humanos , Virus/genética
14.
Elife ; 112022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36069526

RESUMEN

Horizontal gene transfer (HGT) provides a major source of genetic variation. Many viruses, including poxviruses, encode genes with crucial functions directly gained by gene transfer from hosts. The mechanism of transfer to poxvirus genomes is unknown. Using genome analysis and experimental screens of infected cells, we discovered a central role for Long Interspersed Nuclear Element-1 retrotransposition in HGT to virus genomes. The process recapitulates processed pseudogene generation, but with host messenger RNA directed into virus genomes. Intriguingly, hallmark features of retrotransposition appear to favor virus adaption through rapid duplication of captured host genes on arrival. Our study reveals a previously unrecognized conduit of genetic traffic with fundamental implications for the evolution of many virus classes and their hosts.


Asunto(s)
Poxviridae , Virus , Evolución Molecular , Transferencia de Gen Horizontal , Filogenia , Poxviridae/genética , ARN Mensajero , Virus/genética , Retroelementos
15.
Curr Biol ; 32(7): 1511-1522.e6, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35245459

RESUMEN

Most antiviral proteins recognize specific features of viruses. In contrast, the recently described antiviral factor retroCHMP3 interferes with the "host endosomal complexes required for transport" (ESCRT) pathway to inhibit the budding of enveloped viruses. RetroCHMP3 arose independently on multiple occasions via duplication and truncation of the gene encoding the ESCRT-III factor CHMP3. However, since the ESCRT pathway is essential for cellular membrane fission reactions, ESCRT inhibition is potentially cytotoxic. This raises fundamental questions about how hosts can repurpose core cellular functions into antiviral functions without incurring a fitness cost due to excess cellular toxicity. We reveal the evolutionary process of detoxification for retroCHMP3 in New World monkeys using a combination of ancestral reconstructions, cytotoxicity, and virus release assays. A duplicated, full-length copy of retroCHMP3 in the ancestors of New World monkeys provides modest inhibition of virus budding while exhibiting subtle cytotoxicity. Ancient retroCHMP3 then accumulated mutations that reduced cytotoxicity but preserved virus inhibition before a truncating stop codon arose in the more recent ancestors of squirrel monkeys, resulting in potent inhibition. In species where full-length copies of retroCHMP3 still exist, their artificial truncation generated potent virus-budding inhibitors with little cytotoxicity, revealing the potential for future antiviral defenses in modern species. In addition, we discovered that retroCHMP3 restricts LINE-1 retrotransposition, revealing how different challenges to genome integrity might explain multiple independent origins of retroCHMP3 in different species to converge on new immune functions.


Asunto(s)
Liberación del Virus , Virus , Animales , Antivirales , Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Primates/genética
16.
J Exp Med ; 219(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34958350

RESUMEN

Emerging viruses threaten global health, but few experimental models can characterize the virus and host factors necessary for within- and cross-species transmission. Here, we leverage a model whereby pet store mice or rats-which harbor natural rodent pathogens-are cohoused with laboratory mice. This "dirty" mouse model offers a platform for studying acute transmission of viruses between and within hosts via natural mechanisms. We identified numerous viruses and other microbial species that transmit to cohoused mice, including prospective new members of the Coronaviridae, Astroviridae, Picornaviridae, and Narnaviridae families, and uncovered pathogen interactions that promote or prevent virus transmission. We also evaluated transmission dynamics of murine astroviruses during transmission and spread within a new host. Finally, by cohousing our laboratory mice with the bedding of pet store rats, we identified cross-species transmission of a rat astrovirus. Overall, this model system allows for the analysis of transmission of natural rodent viruses and is a platform to further characterize barriers to zoonosis.


Asunto(s)
Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Virosis/etiología , Virosis/transmisión , Enfermedades de los Animales/transmisión , Enfermedades de los Animales/virología , Animales , Biomarcadores , Interacciones Huésped-Patógeno , Humanos , Interferones/metabolismo , Ratones , Ratones Noqueados , Interacciones Microbianas , Roedores , Virosis/metabolismo
17.
Cell ; 184(21): 5419-5431.e16, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34597582

RESUMEN

Many enveloped viruses require the endosomal sorting complexes required for transport (ESCRT) pathway to exit infected cells. This highly conserved pathway mediates essential cellular membrane fission events, which restricts the acquisition of adaptive mutations to counteract viral co-option. Here, we describe duplicated and truncated copies of the ESCRT-III factor CHMP3 that block ESCRT-dependent virus budding and arose independently in New World monkeys and mice. When expressed in human cells, these retroCHMP3 proteins potently inhibit release of retroviruses, paramyxoviruses, and filoviruses. Remarkably, retroCHMP3 proteins have evolved to reduce interactions with other ESCRT-III factors and have little effect on cellular ESCRT processes, revealing routes for decoupling cellular ESCRT functions from viral exploitation. The repurposing of duplicated ESCRT-III proteins thus provides a mechanism to generate broad-spectrum viral budding inhibitors without blocking highly conserved essential cellular ESCRT functions.


Asunto(s)
Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , VIH-1/fisiología , Proteínas del Envoltorio Viral/metabolismo , Liberación del Virus , Animales , Muerte Celular , Supervivencia Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/ultraestructura , Células HEK293 , Células HeLa , Humanos , Interferones/metabolismo , Mamíferos/genética , Ratones Endogámicos C57BL , ARN/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/metabolismo , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
18.
Cell Host Microbe ; 29(9): 1342-1350.e5, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34358433

RESUMEN

The pathogenesis of infectious diarrheal diseases is largely attributed to enterotoxins that cause dehydration by disrupting intestinal water absorption. We investigated patterns of genetic variation in mammalian guanylate cyclase-C (GC-C), an intestinal receptor targeted by bacterially encoded heat-stable enterotoxins (STa), to determine how host species adapt in response to diarrheal infections. Our phylogenetic and functional analysis of GC-C supports long-standing evolutionary conflict with diarrheal bacteria in primates and bats, with highly variable susceptibility to STa across species. In bats, we further show that GC-C diversification has sparked compensatory mutations in the endogenous uroguanylin ligand, suggesting an unusual scenario of pathogen-driven evolution of an entire signaling axis. Together, these findings suggest that conflicts with diarrheal pathogens have had far-reaching impacts on the evolution of mammalian gut physiology.


Asunto(s)
Toxinas Bacterianas/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo II/metabolismo , Enterotoxinas/metabolismo , Guanilato Ciclasa/metabolismo , Péptidos Natriuréticos/metabolismo , Animales , Quirópteros , GMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Diarrea/microbiología , Diarrea/patología , Enterocitos/metabolismo , Escherichia coli Enterotoxigénica/metabolismo , Escherichia coli Enterotoxigénica/patogenicidad , Guanilato Ciclasa/genética , Péptidos Natriuréticos/genética , Unión Proteica , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/metabolismo , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/metabolismo , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidad
19.
bioRxiv ; 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33564759

RESUMEN

The ongoing SARS-CoV-2 pandemic is the third zoonotic coronavirus identified in the last twenty years. Enzootic and epizootic coronaviruses of diverse lineages also pose a significant threat to livestock, as most recently observed for virulent strains of porcine epidemic diarrhea virus (PEDV) and swine acute diarrhea-associated coronavirus (SADS-CoV). Unique to RNA viruses, coronaviruses encode a proofreading exonuclease (ExoN) that lowers point mutation rates to increase the viability of large RNA virus genomes, which comes with the cost of limiting virus adaptation via point mutation. This limitation can be overcome by high rates of recombination that facilitate rapid increases in genetic diversification. To compare dynamics of recombination between related sequences, we developed an open-source computational workflow (IDPlot) to measure nucleotide identity, locate recombination breakpoints, and infer phylogenetic relationships. We analyzed recombination dynamics among three groups of coronaviruses with noteworthy impacts on human health and agriculture: SARSr-CoV, Betacoronavirus-1, and SADSr-CoV. We found that all three groups undergo recombination with highly diverged viruses from sparsely sampled or undescribed lineages, which can disrupt the inference of phylogenetic relationships. In most cases, no parental origin of recombinant regions could be found in genetic databases, suggesting that much coronavirus diversity remains unknown. These patterns of recombination expand the genetic pool that may contribute to future zoonotic events. Our results also illustrate the limitations of current sampling approaches for anticipating zoonotic threats to human and animal health.

20.
PLoS Biol ; 18(12): e3001045, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370271

RESUMEN

Host-pathogen conflicts leave genetic signatures in genes that are critical for host defense functions. Using these "molecular scars" as a guide to discover gene functions, we discovered a vertebrate-specific MItochondrial STress Response (MISTR) circuit. MISTR proteins are associated with electron transport chain (ETC) factors and activated by stress signals such as interferon gamma (IFNγ) and hypoxia. Upon stress, ultraconserved microRNAs (miRNAs) down-regulate MISTR1(NDUFA4) followed by replacement with paralogs MItochondrial STress Response AntiViral (MISTRAV) and/or MItochondrial STress Response Hypoxia (MISTRH). While cells lacking MISTR1(NDUFA4) are more sensitive to chemical and viral apoptotic triggers, cells lacking MISTRAV or expressing the squirrelpox virus-encoded vMISTRAV exhibit resistance to the same insults. Rapid evolution signatures across primate genomes for MISTR1(NDUFA4) and MISTRAV indicate recent and ongoing conflicts with pathogens. MISTR homologs are also found in plants, yeasts, a fish virus, and an algal virus indicating ancient origins and suggesting diverse means of altering mitochondrial function under stress. The discovery of MISTR circuitry highlights the use of evolution-guided studies to reveal fundamental biological processes.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Mitocondrias/genética , Estrés Fisiológico/genética , Animales , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Evolución Molecular , Redes Reguladoras de Genes/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , MicroARNs/genética , Mitocondrias/metabolismo , Filogenia , Estrés Fisiológico/fisiología , Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...