Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Orthop Surg Res ; 19(1): 389, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956611

RESUMEN

BACKGROUND: Elevation of carpal tunnel pressure is known to be associated with carpal tunnel syndrome. This study aimed to correlate the shear wave elastography in the transverse carpal ligament (TCL) with carpal tunnel pressures using a cadaveric model. METHODS: Eight human cadaveric hands were dissected to evacuate the tunnels. A medical balloon was inserted into each tunnel and connected to a pressure regulator to simulate tunnel pressure in the range of 0-210 mmHg with an increment of 30 mmHg. Shear wave velocity and modulus was measure in the middle of TCL. RESULTS: SWV and SWE were significantly dependent on the pressure levels (p < 0.001), and positively correlated to the tunnel pressure (SWV: R = 0.997, p < 0.001; SWE: R = 0.996, p < 0.001). Regression analyses showed linear relationship SWV and pressure (SWV = 4.359 + 0.0263 * Pressure, R2 = 0.994) and between SWE and pressure (SWE = 48.927 + 1.248 * Pressure, R2 = 0.996). CONCLUSION: The study indicated that SWV and SWE in the TCL increased linearly as the tunnel pressure increased within the current pressure range. The findings suggested that SWV/SWE in the TCL has the potential for prediction of tunnel pressure and diagnosis of carpal tunnel syndrome.


Asunto(s)
Cadáver , Síndrome del Túnel Carpiano , Diagnóstico por Imagen de Elasticidad , Ligamentos Articulares , Presión , Humanos , Síndrome del Túnel Carpiano/diagnóstico por imagen , Síndrome del Túnel Carpiano/fisiopatología , Diagnóstico por Imagen de Elasticidad/métodos , Ligamentos Articulares/diagnóstico por imagen , Ligamentos Articulares/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano
2.
Int J Spine Surg ; 18(2): 164-177, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38677779

RESUMEN

BACKGROUND: With the growing prevalence of lumbar spinal stenosis, endoscopic surgery, which incorporates techniques such as transforaminal, interlaminar, and unilateral biportal (UBE) endoscopy, is increasingly considered. However, the patient selection criteria are debated among spine surgeons. OBJECTIVE: This study used a polytomous Rasch analysis to evaluate the factors influencing surgeon decision-making in selecting patients for endoscopic surgical treatment of lumbar spinal stenosis. METHODS: A comprehensive survey was distributed to a representative sample of 296 spine surgeons. Questions encompassed various patient-related and clinical factors, and responses were captured on a logit scale graphically displaying person-item maps and category probability curves for each test item. Using a Rasch analysis, the data were subsequently analyzed to determine the latent traits influencing decision-making. RESULTS: The Rasch analysis revealed that surgeons' preferences for transforaminal, interlaminar, and UBE techniques were easily influenced by comfort level and experience with the endoscopic procedure and patient-related factors. Harder-to-agree items included technological aspects, favorable clinical outcomes, and postoperative functional recovery and rehabilitation. Descriptive statistics suggested interlaminar as the best endoscopic spinal stenosis decompression technique. However, logit person-item analysis integral to the Rasch methodology showed highest intensity for transforaminal followed by interlaminar endoscopic lumbar stenosis decompression. The UBE technique was the hardest to agree on with a disordered person-item analysis and thresholds in category probability curve plots. CONCLUSION: Surgeon decision-making in selecting patients for endoscopic surgery for lumbar spinal stenosis is multifaceted. While the framework of clinical guidelines remains paramount, on-the-ground experience-based factors significantly influence surgeons' selection of patients for endoscopic lumbar spinal stenosis surgeries. The Rasch methodology allows for a more granular psychometric evaluation of surgeon decision-making and accounts better for years-long experience that may be lost in standardized clinical guideline development. This new approach to assessing spine surgeons' thought processes may improve the implementation of evidence-based protocol change dictated by technological advances was endorsed by the Interamerican Society for Minimally Invasive Spine Surgery (SICCMI), the International Society for Minimal Intervention in Spinal Surgery (ISMISS), the Mexican Spine Society (AMCICO), the Brazilian Spine Society (SBC), the Society for Minimally Invasive Spine Surgery (SMISS), the Korean Minimally Invasive Spine Society (KOMISS), and the International Society for the Advancement of Spine Surgery (ISASS).

3.
Int J Spine Surg ; 18(2): 138-151, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38677780

RESUMEN

BACKGROUND: Effective 1 January 2017, single-level endoscopic lumbar discectomy received a Category I Current Procedural Terminology (CPT) code 62380. However, no work relative value units (RVUs) are currently assigned to the procedure. An international team of endoscopic spine surgeons conducted a study, endorsed by several spine societies, analyzing the learning curve, difficulty, psychological intensity, and estimated work RVUs of endoscopic lumbar spinal decompression compared with other common lumbar spine surgeries. METHODS: A survey comparing CPT 62380 to 10 other comparator CPT codes reflective of common spine surgeries was developed to assess the work RVUs in terms of learning curve, difficulty, psychological intensity, and work effort using a paired Rasch method. RESULTS: The survey was sent to 542 spine specialists. Of 322 respondents, 150 completed the survey for a 43.1% completion rate. Rasch analysis of the submitted responses statistically corroborated common knowledge that the learning curve with lumbar endoscopic spinal surgery is steeper and more complex than with traditional translaminar lumbar decompression surgeries. It also showed that the psychological stress and mental and work effort with the lumbar endoscopic decompression surgery were perceived to be higher by responding spine surgeons compared with posterior comparator decompression and fusion surgeries and even posterior interbody and posterolateral fusion surgeries. The regression analysis of work effort vs procedural difficulty showed the real-world evaluation of the lumbar endoscopic decompression surgery described in CPT code 62380 with a calculated work RVU of 18.2464. CONCLUSION: The Rasch analysis suggested the valuation for the endoscopic lumbar decompression surgery should be higher than for standard lumbar surgeries: 111.1% of the laminectomy with exploration and/or decompression of spinal cord and/or cauda equina (CPT 63005), 118.71% of the laminectomy code (CPT 63047), which includes foraminotomy and facetectomy, 152.1% of the hemilaminectomy code (CPT 63030), and 259.55% of the interlaminar or interspinous process stabilization/distraction without decompression code (CPT 22869). This research methodology was endorsed by the Interamerican Society for Minimally Invasive Spine Surgery (SICCMI), the Mexican Society of Spinal Surgeons (AMCICO), the International Society For Minimally Invasive Spine Surgery (ISMISS), the Brazilian Spine Society (SBC), the Society for Minimally Invasive Spine Surgery (SMISS), the Korean Minimally Invasive Spine Surgery (KOMISS), and the International Society for the Advancement of Spine Surgery (ISASS). CLINICAL RELEVANCE: This study provides an updated reimbursement recommendation for endoscopic spine surgery. LEVEL OF EVIDENCE: Level 3.

4.
Int Orthop ; 48(7): 1677-1688, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38502335

RESUMEN

PURPOSE: Bone and joint infections, complicated by the burgeoning challenge of antimicrobial resistance (AMR), pose significant public health threats by amplifying the disease burden globally. We leveraged results from the 2019 Global Burden of Disease Study (GBD) to explore the impact of AMR attributed to bone and joint infections in terms of disability-adjusted life years (DALYs), elucidating the contemporary status and temporal trends. METHODS: Utilizing GBD 2019 data, we summarized the burden of bone and joint infections attributed to AMR across 195 countries and territories in the 30 years from 1990 to 2019. We review the epidemiology of AMR in terms of age-standardized rates, the estimated DALYs, comprising years of life lost (YLLs) and years lived with disability (YLDs), as well as associations between DALYs and socio-demographic indices. RESULTS: The GBD revealed that DALYs attributed to bone and joint infections associated with AMR have risen discernibly between 1990 and 2019 globally. Significant geographical disparities and a positive correlation with socio-demographic indicators were observed. Staphylococcus aureus infections, Group A Streptococcus, Group B Streptococcus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterobacter-related bone and joint infections were associated with the highest DALYs because of a high proportion of antimicrobial resistance. Countries with limited access to healthcare, suboptimal sanitary conditions, and inconsistent antibiotic stewardship were markedly impacted. CONCLUSIONS: The GBD underscores the escalating burden of bone and joint infections exacerbated by AMR, necessitating urgent, multi-faceted interventions. Strategies to mitigate the progression and impact of AMR should emphasize prudent antimicrobial usage and robust infection prevention and control measures, coupled with advancements in diagnostic and therapeutic modalities.


Asunto(s)
Años de Vida Ajustados por Discapacidad , Carga Global de Enfermedades , Humanos , Farmacorresistencia Bacteriana , Antibacterianos/uso terapéutico , Masculino , Salud Global , Artritis Infecciosa/epidemiología , Artritis Infecciosa/microbiología , Artritis Infecciosa/tratamiento farmacológico , Femenino , Enfermedades Óseas Infecciosas/microbiología , Enfermedades Óseas Infecciosas/epidemiología , Enfermedades Óseas Infecciosas/tratamiento farmacológico , Años de Vida Ajustados por Calidad de Vida
5.
J Pers Med ; 13(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37511657

RESUMEN

Proving clinical superiority of personalized care models in interventional and surgical pain management is challenging. The apparent difficulties may arise from the inability to standardize complex surgical procedures that often involve multiple steps. Ensuring the surgery is performed the same way every time is nearly impossible. Confounding factors, such as the variability of the patient population and selection bias regarding comorbidities and anatomical variations are also difficult to control for. Small sample sizes in study groups comparing iterations of a surgical protocol may amplify bias. It is essentially impossible to conceal the surgical treatment from the surgeon and the operating team. Restrictive inclusion and exclusion criteria may distort the study population to no longer reflect patients seen in daily practice. Hindsight bias is introduced by the inability to effectively blind patient group allocation, which affects clinical result interpretation, particularly if the outcome is already known to the investigators when the outcome analysis is performed (often a long time after the intervention). Randomization is equally problematic, as many patients want to avoid being randomly assigned to a study group, particularly if they perceive their surgeon to be unsure of which treatment will likely render the best clinical outcome for them. Ethical concerns may also exist if the study involves additional and unnecessary risks. Lastly, surgical trials are costly, especially if the tested interventions are complex and require long-term follow-up to assess their benefit. Traditional clinical testing of personalized surgical pain management treatments may be more challenging because individualized solutions tailored to each patient's pain generator can vary extensively. However, high-grade evidence is needed to prompt a protocol change and break with traditional image-based criteria for treatment. In this article, the authors review issues in surgical trials and offer practical solutions.

6.
BMC Biotechnol ; 23(1): 12, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127673

RESUMEN

BACKGROUND: Dysmotility and postoperative ileus (POI) are frequent major clinical problems post-abdominal surgery. Erythropoietin (EPO) is a multifunctional tissue-protective cytokine that promotes recovery of the intestine in various injury models. While EPO receptors (EPOR) are present in vagal Schwann cells, the role of EPOR in POI recovery is unknown because of the lack of EPOR antagonists or Schwann-cell specific EPOR knockout animals. This study was designed to explore the effect of EPO via EPOR in vagal nerve Schwann cells in a mouse model of POI. RESULTS: The structural features of EPOR and its activation by EPO-mediated dimerization were understood using structural analysis. Later, using the Cre-loxP system, we developed a myelin protein zero (Mpz) promoter-driven knockout mouse model of Schwann cell EPOR (MpzCre-EPORflox/flox / Mpz-EPOR-KO) confirmed using PCR and qRT-PCR techniques. We then measured the intestinal transit time (ITT) at baseline and after induction of POI with and without EPO treatment. Although we have previously shown that EPO accelerates functional recovery in POI in wild type mice, EPO treatment did not improve functional recovery of ITT in POI of Mpz-EPOR-KO mice. CONCLUSIONS: To the best of our knowledge, this is the first pre-clinical study to demonstrate a novel mouse model of EPOR specific knock out on Schwan cells with an effect in the gut. We also showed novel beneficial effects of EPO through vagus nerve Schwann cell-EPOR in intestinal dysmotility. Our findings suggest that EPO-EPOR signaling in the vagus nerve after POI is important for the functional recovery of ITT.


Asunto(s)
Eritropoyetina , Receptores de Eritropoyetina , Ratones , Animales , Receptores de Eritropoyetina/metabolismo , Eritropoyetina/metabolismo , Células de Schwann/metabolismo , Transducción de Señal , Ratones Noqueados , Motilidad Gastrointestinal
7.
J Pers Med ; 13(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241022

RESUMEN

Personalized care models are dominating modern medicine. These models are rooted in teaching future physicians the skill set to keep up with innovation. In orthopedic surgery and neurosurgery, education is increasingly influenced by augmented reality, simulation, navigation, robotics, and in some cases, artificial intelligence. The postpandemic learning environment has also changed, emphasizing online learning and skill- and competency-based teaching models incorporating clinical and bench-top research. Attempts to improve work-life balance and minimize physician burnout have led to work-hour restrictions in postgraduate training programs. These restrictions have made it particularly challenging for orthopedic and neurosurgery residents to acquire the knowledge and skill set to meet the requirements for certification. The fast-paced flow of information and the rapid implementation of innovation require higher efficiencies in the modern postgraduate training environment. However, what is taught typically lags several years behind. Examples include minimally invasive tissue-sparing techniques through tubular small-bladed retractor systems, robotic and navigation, endoscopic, patient-specific implants made possible by advances in imaging technology and 3D printing, and regenerative strategies. Currently, the traditional roles of mentee and mentor are being redefined. The future orthopedic surgeons and neurosurgeons involved in personalized surgical pain management will need to be versed in several disciplines ranging from bioengineering, basic research, computer, social and health sciences, clinical study, trial design, public health policy development, and economic accountability. Solutions to the fast-paced innovation cycle in orthopedic surgery and neurosurgery include adaptive learning skills to seize opportunities for innovation with execution and implementation by facilitating translational research and clinical program development across traditional boundaries between clinical and nonclinical specialties. Preparing the future generation of surgeons to have the aptitude to keep up with the rapid technological advances is challenging for postgraduate residency programs and accreditation agencies. However, implementing clinical protocol change when the entrepreneur-investigator surgeon substantiates it with high-grade clinical evidence is at the heart of personalized surgical pain management.

8.
J Hand Surg Am ; 48(8): 831.e1-831.e9, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35418340

RESUMEN

PURPOSE: Musculoskeletal injuries are common, and peripheral nerve injury (PNI) causes significant muscle and bone loss within weeks. After PNI, 4-aminopyridine (4-AP) improves functional recovery and muscle atrophy. However, it is unknown whether 4-AP has any effect on isolated traumatic muscle injury and PNI-induced bone loss. METHODS: A standardized crush injury was performed on the sciatic nerve and muscles in mice, and the mice were assigned to receive normal saline or 4-AP treatment daily for 21 days. The postinjury motor and sensory function recovery was assessed, injured muscles were processed for histomorphometry, and the tibial bone was scanned for bone density. RESULTS: 4-Aminopyridine significantly accelerated the postinjury motor and sensory function recovery, improved muscle histomorphometry, increased muscle satellite cell numbers, and shifted muscle fiber types after combined nerve and muscle injury. Importantly, the 4-AP treatment significantly reduced PNI-induced bone loss. In contrast, in the case of isolated muscle injury, 4-AP had no effect on functional recovery and bone density, but it improved muscle-specific histomorphometry to a limited extent. CONCLUSIONS: These findings demonstrate the potential beneficial effects of 4-AP on the recovery of muscle morphology and bone density after combined muscle and nerve injury. CLINICAL RELEVANCE: Nerve injuries frequently involve muscle and result in rapid muscle and bone atrophy. In this scenario, 4-AP, in addition to accelerating nerve functional recovery, might work as an adjunctive agent to improve the recovery of injured muscle and attenuate PNI-induced bone loss.


Asunto(s)
Enfermedades Óseas Metabólicas , Traumatismos de los Nervios Periféricos , Ratones , Animales , 4-Aminopiridina/farmacología , 4-Aminopiridina/metabolismo , 4-Aminopiridina/uso terapéutico , Nervio Ciático/lesiones , Atrofia Muscular , Músculos , Recuperación de la Función , Regeneración Nerviosa
9.
Neural Regen Res ; 18(2): 439-444, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35900443

RESUMEN

We recently demonstrated a repurposing beneficial effect of 4-aminopyridine (4-AP), a potassium channel blocker, on functional recovery and muscle atrophy after sciatic nerve crush injury in rodents. However, this effect of 4-AP is unknown in nerve transection, gap, and grafting models. To evaluate and compare the functional recovery, nerve morphology, and muscle atrophy, we used a novel stepwise nerve transection with gluing (STG), as well as 7-mm irreparable nerve gap (G-7/0) and 7-mm isografting in 5-mm gap (G-5/7) models in the absence and presence of 4-AP treatment. Following surgery, sciatic functional index was determined weekly to evaluate the direct in vivo global motor functional recovery. After 12 weeks, nerves were processed for whole-mount immunofluorescence imaging, and tibialis anterior muscles were harvested for wet weight and quantitative histomorphological analyses for muscle fiber cross-sectional area and minimal Feret's diameter. Average post-injury sciatic functional index values in STG and G-5/7 models were significantly greater than those in the G-7/0 model. 4-AP did not affect the sciatic functional index recovery in any model. Compared to STG, nerve imaging revealed more misdirected axons and distorted nerve architecture with isografting. While muscle weight, cross-sectional area, and minimal Feret's diameter were significantly smaller in G-7/0 model compared with STG and G-5/7, 4-AP treatment significantly increased right TA muscle mass, cross-sectional area, and minimal Feret's diameter in G-7/0 model. These findings demonstrate that functional recovery and muscle atrophy after peripheral nerve injury are directly related to the intervening nerve gap, and 4-AP exerts differential effects on functional recovery and muscle atrophy.

10.
J Nanobiotechnology ; 20(1): 461, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307805

RESUMEN

BACKGROUND: Traumatic peripheral nerve injury (TPNI) is a major medical problem with no universally accepted pharmacologic treatment. We hypothesized that encapsulation of pro-angiogenic erythropoietin (EPO) in amphiphilic PLGA-PEG block copolymers could serve as a local controlled-release drug delivery system to enhance neurovascular regeneration after nerve injury. METHODS: In this study, we synthesized an EPO-PLGA-PEG block copolymer formulation. We characterized its physiochemical and release properties and examined its effects on functional recovery, neural regeneration, and blood vessel formation after sciatic nerve crush injury in mice. RESULTS: EPO-PLGA-PEG underwent solution-to-gel transition within the physiologically relevant temperature window and released stable EPO for up to 18 days. EPO-PLGA-PEG significantly enhanced sciatic function index (SFI), grip strength, and withdrawal reflex post-sciatic nerve crush injury. Furthermore, EPO-PLGA-PEG significantly increased blood vessel density, number of junctions, and myelinated nerve fibers after injury. CONCLUSION: This study provides promising preclinical evidence for using EPO-PLGA-PEG as a local controlled-release treatment to enhance functional outcomes and neurovascular regeneration in TPNI.


Asunto(s)
Lesiones por Aplastamiento , Eritropoyetina , Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Ratones , Animales , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Preparaciones de Acción Retardada/farmacología , Regeneración Nerviosa , Neuropatía Ciática/tratamiento farmacológico , Eritropoyetina/farmacología , Eritropoyetina/química , Eritropoyetina/uso terapéutico , Lesiones por Aplastamiento/tratamiento farmacológico
11.
Biomedicines ; 10(7)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35884953

RESUMEN

The discovery of ways to enhance skin wound healing is of great importance due to the frequency of skin lesions. We discovered that 4-aminopyridine (4-AP), a potassium channel blocker approved by the FDA for improving walking ability in multiple sclerosis, greatly enhances skin wound healing. Benefits included faster wound closure, restoration of normal-appearing skin architecture, and reinnervation. Hair follicle neogenesis within the healed wounds was increased, both histologically and by analysis of K15 and K17 expression. 4-AP increased levels of vimentin (fibroblasts) and alpha-smooth muscle actin (α-SMA, collagen-producing myofibroblasts) in the healed dermis. 4-AP also increased neuronal regeneration with increased numbers of axons and S100+ Schwann cells (SCs), and increased expression of SRY-Box Transcription Factor 10 (SOX10). Treatment also increased levels of transforming growth factor-ß (TGF-ß), substance P, and nerve growth factor (NGF), important promoters of wound healing. In vitro studies demonstrated that 4-AP induced nerve growth factor and enhanced proliferation and migration of human keratinocytes. Thus, 4-AP enhanced many of the key attributes of successful wound healing and offers a promising new approach to enhance skin wound healing and tissue regeneration.

12.
Bio Protoc ; 12(5): e4350, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35592596

RESUMEN

Peripheral nerve injury (PNI) is common in all walks of life, and the most common PNIs are nerve crush and nerve transection. While optimal functional recovery after crush injury occurs over weeks, functional recovery after nerve transection with microsurgical repair and grafting is poor, and associated with permanent disability. The gold-standard treatment for nerve transection injury is microsurgical tensionless end-to-end suture repair. Since it is unethical to do experimental PNI studies in humans, it is therefore indispensable to have a simple, reliable, and reproducible pre-clinical animal model for successful evaluation of the efficacy of a novel treatment strategy. The objective of this article is two-fold: (A) To present a novel standardized peripheral nerve transection method in mice, using fibrin glue for modeling peripheral nerve transection injury, with reproducible gap distance between the severed nerve ends, and (B) to document the step-wise description of constructing a pressure sensor device for crush injury pressure measurements. We have successfully established a novel nerve transection model in mice using fibrin glue, and demonstrated that this transection method decreases surgical difficulties and variability by avoiding microsurgical manipulations on the nerve, ensuring the reproducibility and reliability of this animal model. Although it is quite impossible to exactly mimic the pathophysiological changes seen in nerve transection with sutures, we hope that the close resemblance of our novel pre-clinical model with gold-standard suturing can be easily reproduced by any lab, and that the data generated by this method significantly contributes to better understanding of nerve pathophysiology, molecular mechanisms of nerve regeneration, and the development of novel strategies for optimal functional recovery. In case of peripheral nerve crush injury, current methods rely on inter-device and operator precision to limit the variation with applied pressure. While the inability to accurately quantify the crush pressure may result in reduced reproducibility between animals and studies, there is no documentation of a pressure monitoring device that can be readily used for real-time pressure measurements. To address this deficit, we constructed a novel portable device comprised of an Arduino UNO microcontroller board and force sensitive resistor (FSR) capable of reporting the real-time pressure applied to a nerve. This novel digital pressure sensor device is cheap, easy to construct and assemble, and we believe that this device will be useful for any lab performing nerve crush injury in rodents.

13.
J Vis Exp ; (181)2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35404346

RESUMEN

Traumatic peripheral nerve injury (TPNI) is a common cause of morbidity following orthopedic trauma. Reproducible and precise methods of injuring nerve and denervating muscle have long been a goal in musculoskeletal research. Many traumatically injured limbs have nerve trauma that defines the long-term patient outcome. Over several years, precise methods of producing microsurgical nerve injuries have been developed, including crush, lacerations, and nerve-gap grafting, allowing for reproducible outcome assessments. Moreover, newer methods are created for calibrated crush injuries that offer clinically relevant correlations with outcomes used to assess human patients. The principles of minimal manipulation to ensure low variability in nerve injury allow for adding still more associated tissue injuries into these models. This includes direct muscle crush and other components of limb injury. Finally, atrophy assessment and precise analysis of behavioral outcomes make these methods a complete package for studying musculoskeletal trauma that realistically incorporates all the elements of human traumatic limb injury.


Asunto(s)
Lesiones por Aplastamiento , Traumatismos de los Nervios Periféricos , Animales , Humanos , Ratones , Procedimientos Neuroquirúrgicos , Traumatismos de los Nervios Periféricos/etiología
14.
J Vis Exp ; (181)2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35404363

RESUMEN

This protocol describes isolation methods, culturing conditions, and characterization of human primary cells with high yield and viability using rapid enzymatic dissociation of skin. Primary keratinocytes, fibroblasts, and Schwann cells are all harvested from the human newborn foreskin, which is available following standard of care procedures. The removed skin is disinfected, and the subcutaneous fat and muscle are removed using a scalpel. The method consists of enzymatic and mechanical separation of epidermal and dermal layers, followed by additional enzymatic digestion to obtain single-cell suspensions from each of these skin layers. Finally, single cells are grown in appropriate cell culture media following standard cell culture protocols to maintain growth and viability over weeks. Together, this simple protocol allows isolation, culturing, and characterization of all three cell types from a single piece of skin for in vitro evaluation of skin-nerve models. Additionally, these cells can be used together in co-cultures to gauge their effects on each other and their responses to in vitro trauma in the form of scratches performed robotically in the culture associated with wound healing.


Asunto(s)
Prepucio , Queratinocitos , Células Cultivadas , Fibroblastos , Humanos , Recién Nacido , Masculino , Células de Schwann , Piel
15.
Cell Death Dis ; 13(3): 245, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296651

RESUMEN

Following acute sciatic nerve crush injury (SNCI), inflammation and the improper phagocytic clearance of dying Schwann cells (SCs) has effects on remodeling that lead to morbidity and incomplete functional recovery. Therapeutic strategies like the use of erythropoietin (EPO) for peripheral nerve trauma may serve to bring immune cell phagocytotic clearance under control to support debris clearance. We evaluated EPO's effect on SNCI and found EPO treatment increased myelination and sciatic functional index (SFI) and bolstered anti-apoptosis and phagocytosis of myelin debris via CD206+ macrophages when compared to saline treatment. EPO enhanced M2 phenotype activity, both in bone marrow-derived macrophages (BMMØs) and peritoneal-derived macrophages (PMØs) in vitro, as well as in PMØs in vivo. EPO increased efferocytosis of apoptotic sciatic nerve derived Schwann cells (SNSCs) in both settings as demonstrated using immunofluorescence (IF) and flow cytometry. EPO treatment significantly attenuated pro-inflammatory genes (IL1ß, iNOS, and CD68) and augmented anti-inflammatory genes (IL10 and CD163) and the cell-surface marker CD206. EPO also increased anti-apoptotic (Annexin V/7AAD) effects after lipopolysaccharide (LPS) induction in macrophages. Our data demonstrate EPO promotes the M2 phenotype macrophages to ameliorate apoptosis and efferocytosis of dying SCs and myelin debris and improves SN functional recovery following SNCI.


Asunto(s)
Eritropoyetina , Traumatismos de los Nervios Periféricos , Eritropoyetina/farmacología , Humanos , Macrófagos , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Fagocitosis/fisiología , Células de Schwann
16.
BMC Res Notes ; 15(1): 80, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197129

RESUMEN

OBJECTIVE: Antibiotics (ABX) are widely used for life-threatening infections and also for routine surgical operations. Compelling evidence suggests that ABX-induced alterations of gut microbiota composition, termed dysbiosis, are linked with diverse disease states including neurological and neurodegenerative conditions. To combat the consequences of dysbiosis, probiotics (PBX) are widely used. ABX-induced dysbiosis is reported to impair neurological function after spinal cord injury. Traumatic peripheral nerve injury (TPNI) results in profound neurologic impairment and permanent disability. It is unknown whether ABX treatment-induced dysbiosis has any impact on TPNI-induced functional recovery, and if so, what role medical-grade PBX could have on TPNI recovery. RESULTS: In this study, ABX-induced dysbiosis and PBX-induced microbiota enrichment models were used to explore the potential role of gut microbiome in TPNI. Stool analysis with 16S ribosomal RNA (rRNA) gene sequencing confirmed ABX-induced dysbiosis and revealed that ABX-induced changes could be partially restored by PBX administration with an abundance of butyrate producing bacteria. Pre-injury ABX significantly impaired, but pre-injury PBX significantly improved post-TPNI functional recovery. Importantly, post-injury PBX protected against pre-injury ABX-induced functional impairment. These findings demonstrate that reestablishment of gut microbiota composition with butyrate producing PBX during ABX-induced dysbiosis could be a useful adjuvant therapy for TPNI.


Asunto(s)
Lesiones por Aplastamiento , Microbioma Gastrointestinal , Traumatismos de los Nervios Periféricos , Probióticos , Animales , Antibacterianos/farmacología , Bacterias Anaerobias , Butiratos/farmacología , Lesiones por Aplastamiento/tratamiento farmacológico , Ratones , Nervios Periféricos , ARN Ribosómico 16S/genética
17.
Ann Diagn Pathol ; 56: 151878, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34953234

RESUMEN

Charcot neuropathic arthropathy is a degenerative, debilitating disease that affects the foot and ankle in patients with diabetes and peripheral neuropathy, often resulting in destruction, amputation. Proposed etiologies include neurotraumatic, inflammatory, and neurovascular. There has been no previous animal model for Charcot. This study proposes a novel rodent model of induced neuropathic arthropathy to understand the earliest progressive pathologic changes of human Charcot. High-fat-diet-induced obese (DIO) Wild-type C57BL/6J mice (n = 8, diabetic) and age-matched low-fat-diet controls (n = 6) were run on an inclined high-intensity treadmill protocol four times per week for 7 weeks to induce mechanical neurotrauma to the hind-paw, creating Charcot neuropathic arthropathy. Sensory function and radiologic correlation were assessed; animals were sacrificed to evaluate hindpaw soft tissue and joint pathology. With this model, Charcot-DIO mice reveals early pathologic features of Charcot neuropathic arthropathy, a distinctive subchondral microfracture callus, perichondral/subchondral osseous hypertrophy/osteosclerosis, that precedes fragmentation/destruction observed in human surgical pathology specimens. There is intraneural vacuolar-myxoid change and arteriolosclerosis. The DIO mice demonstrated significant hot plate sensory neuropathy compared (P < 0.01), radiographic collapse of the longitudinal arch in DIO mice (P < 0.001), and diminished bone density in DIO, compared with normal controls. Despite exercise, high-fat-DIO mice increased body weight and percentage of body fat (P < 0.001). This murine model of diet-induced obesity and peripheral neuropathy, combined with repetitive mechanical trauma, simulates the earliest changes observed in human Charcot neuropathic arthropathy, of vasculopathic-neuropathic etiology. An understanding of early pathophysiology may assist early diagnosis and intervention and reduce patient morbidity and mortality in Charcot neuropathic arthropathy.


Asunto(s)
Artropatía Neurógena/patología , Cartílago Articular/patología , Fracturas por Estrés/patología , Osteosclerosis/patología , Animales , Modelos Animales de Enfermedad , Ratones , Obesidad/patología
18.
ACS Appl Bio Mater ; 4(5): 4140-4151, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34142019

RESUMEN

Traumatic peripheral nerve injury (TPNI) represents a major medical problem that results in loss of motor and sensory function, and in severe cases, limb paralysis and amputation. To date, there are no effective treatments beyond surgery in selective cases. In repurposing studies, we found that daily systemic administration of the FDA-approved drug 4-aminopyridine (4-AP) enhanced functional recovery after acute peripheral nerve injury. This study was aimed at constructing a novel local delivery system of 4-AP using thermogelling polymers. We optimized a thermosensitive (4-AP)-poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) block copolymer formulation. (4-AP)-PLGA-PEG exhibited controlled release of 4-AP both in vitro and in vivo for approximately 3 weeks, with clinically relevant safe serum levels in animals. Rheological investigation showed that (4-AP)-PLGA-PEG underwent a solution to gel transition at 32 °C, a physiologically relevant temperature, allowing us to administer it to an injured limb while subsequently forming an in situ gel. A single local administration of (4-AP)-PLGA-PEG remarkably enhanced motor and sensory functional recovery on post-sciatic nerve crush injury days 1, 3, 7, 14, and 21. Moreover, immunohistochemical studies of injured nerves treated with (4-AP)-PLGA-PEG demonstrated an increased expression of neurofilament heavy chain (NF-H) and myelin protein zero (MPZ) proteins, two major markers of nerve regeneration. These findings demonstrate that (4-AP)-PLGA-PEG may be a promising long-acting local therapeutic agent in TPNI, for which no pharmacologic treatment exists.


Asunto(s)
4-Aminopiridina/uso terapéutico , Materiales Biocompatibles/uso terapéutico , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Poliésteres/uso terapéutico , Polietilenglicoles/uso terapéutico , Temperatura , 4-Aminopiridina/administración & dosificación , Enfermedad Aguda , Animales , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/síntesis química , Modelos Animales de Enfermedad , Masculino , Ensayo de Materiales , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Tamaño de la Partícula , Poliésteres/administración & dosificación , Polietilenglicoles/administración & dosificación
19.
Mil Med ; 186(Suppl 1): 473-478, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33499447

RESUMEN

INTRODUCTION: Peripheral nerve crush injury (PNCI) models are commonly used to study nerve damage and the potential beneficial effects of novel therapeutic strategies. Current models of PNCI rely on inter-device and operator precision to limit the variation with applied pressure. Although the inability to accurately quantify the PNCI pressure may result in reduced reproducibility between animals and studies, there is very limited information on the standardization and quantification of applied pressure with PNCI. To address this deficit, we constructed a novel device comprised of an Arduino UNO microcontroller board and Force Sensitive Resistor capable of reporting the real-time pressure applied to a nerve. METHODS: Two forceps and two needle drivers were used to perform 30-second PNCIs to the sciatic nerves of mice (n = 5/group). Needle drivers were set to the first notch, and a jig was used to hold the forceps pinch at a reproducible pressure. The Force Sensitive Resistor was interposed in-series between the nerve and instrument during PNCI. RESULTS: Data collected from these procedures displayed average needle driver pressures an order of multitude greater than forceps pressures. Additionally, needle driver inter- and intra-procedure pressure remained more consistent than forceps pressure, with needle driver coefficient of variation equal to 14.5% vs. a forceps coefficient of variation equal to 45.4%. CONCLUSIONS: This is the first demonstration of real-time pressure measurements in PNCI models and it reveals that the applied pressures are dependent on the types of device used. The large disparity in pressure represents an inability to apply graded accurate and consistent intermediate pressure gradients in PNCI. These findings indicate a need for documentation of pressure severity as a screening for PNCI in animals, and the real-time pressure sensor could be a useful tool in monitoring and applying consistent pressure, reducing the outcome variability within the same experimental model of PNCI.


Asunto(s)
Lesiones por Aplastamiento , Animales , Femenino , Ratones , Compresión Nerviosa , Traumatismos de los Nervios Periféricos/diagnóstico , Reproducibilidad de los Resultados
20.
Mil Med ; 186(Suppl 1): 479-485, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33499448

RESUMEN

INTRODUCTION: Traumatic peripheral nerve injuries (TPNIs) are increasingly prevalent in battlefield trauma, and the functional recovery with TPNIs depends on axonal continuity. Although the physical examination is the main tool for clinical diagnosis with diagnostic work up, there is no diagnostic tool available to differentiate nerve injuries based on axonal continuity. Therefore, treatment often relies on "watchful waiting," and this leads to muscle weakness and further reduces the chances of functional recovery. 4-aminopyridine (4-AP) is clinically used in multiple sclerosis patients for walking performance improvement. Preliminary results in conscious mice suggested a diagnostic role of 4-AP in distinguishing axonal continuity. In this study, we thought to evaluate the diagnostic potential of 4-AP on the axonal continuity in unawake/sedated animals. MATERIALS AND METHODS: Rat sciatic nerve crush and transection injuries were used in this study. Briefly, rats were anesthetized with isoflurane and mechanically ventilated with oxygen-balanced vaporized isoflurane. Sciatic nerve and triceps surae muscles were exposed by blunt dissection, and a stimulating electrode was placed under a sciatic nerve proximal to the crush injury. A force transducer measured muscle tension response to electrical stimulation of sciatic nerve. Muscle response was measured before crush, after crush, and 30 minutes after systemic 4-AP (150 µg/kg) or local (4-AP)-poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG) treatment. RESULTS: We found that both crush and transection injuries in sciatic nerve completely abolished muscle response to electrical stimulation. Single dose of systemic 4-AP and local (4-AP)-PLGA-PEG treatment with crush injury significantly restored muscle responses to electrical stimulation after 30 minutes of administration. However, systemic 4-AP treatment had no effect on muscle response after nerve transection. These results clearly demonstrate that 4-AP can restore nerve conduction and produce muscle response within minutes of administration only when there is a nerve continuity, even in the sedated animal. CONCLUSIONS: We conclude that 4-AP could be a promising diagnostic agent in differentiating TPNI based on axonal continuity.


Asunto(s)
Axones , 4-Aminopiridina/farmacología , 4-Aminopiridina/uso terapéutico , Animales , Masculino , Ratones , Traumatismos de los Nervios Periféricos/diagnóstico , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Nervio Ciático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...