Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Genet Eng Biotechnol ; 21(1): 92, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707582

RESUMEN

BACKGROUND: Tecothane (medical grade of polyurethane) is strongly involved in the fabrication of metallic and polymeric-based medical devices (e.g., catheters and stents) as they can withstand cardiac cycle-related forces without deforming or failing, and they can mimic tissue behavior. The main problem is microbial contamination and formation of pathogenic biofilms on such solid surfaces within the human body. Accordingly, our hypothesis is the coating of tecothane outer surfaces with antibacterial agents through the electro-deposition or chemical grafting of anti-biofilm agents onto the stent and catheter surfaces. RESULTS: Tecothane is grafted with itaconic acid for cross-linking the polyethyleneimine (PEI) as the protective-active layer. Accordingly, the grafting of poly-itaconic acid onto the Tecothane was achieved by three different methods: wet-chemical approach, electro-polymerization, or by using plasma treatment. The successful modifications were verified using Fourier Transform Infrared (FTIR) spectroscopy, grafting percentage calculations, electrochemical, and microscopic monitoring of biofilm formation. The grafting efficiency of itaconic acid was over 3.2% (w/w) at 60 â„ƒ after 6 h of the catheter chemical modification. Bio-electrochemical signals of biofilms have been seriously reduced after chemical modification because of the inhibition of biofilm formation (for both Pseudomonas aeruginosa and Staphylococcus aureus) over a period of 9 days. CONCLUSION: Chemical functionalization of the polyurethane materials with the antimicrobial and anti-biofilm agents led to a significant decrease in the formation of pathogenic biofilms. This promising proof-concept will open the door to explore further surface protection with potential anti-biofilm agents providing better and sustainable productions of stents and catheters biomaterials.

2.
Biosensors (Basel) ; 13(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36671888

RESUMEN

We report on the electrochemical determination of one the most effective and widely used chemotherapeutic, anti-inflammatory, and immunomodulator agents, methotrexate (MTX), using low-cost, green, and facile one-pot prepared graphitic carbon nitride (g-CN ) nanosheets. The g-CN nanosheets have been characterized utilizing Fourier transform infrared spectroscopy, X-ray diffraction(XRD), scanning electron microscopy(SEM), and density functional theory (DFT). In comparison to the bare carbon paste electrode (CPE), the g-CN -modified electrode showed a spectacular enhancement in the electrochemical oxidation and detection abilities of MTX. The proposed material exhibits very low limits of detection (12.45 nM) and quantification (41.5 nM), while possessing a wide linear range of 0.22-1.11 µM and 1.11-27.03 µM under optimized conditions at pH 7.0. Due to the ease of preparation of g-CN, it can be adopted for the cost-effective detection of MTX in industrial and clinical analyses.


Asunto(s)
Grafito , Metotrexato , Técnicas Electroquímicas/métodos , Grafito/química , Carbono/química , Factores Inmunológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...