Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
3.
Faraday Discuss ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082487

RESUMEN

Deep eutectic solvents (DESs) are a class of ionic liquid with emerging applications in ionometallurgy. The characteristic high viscosity of DESs, however, limit mass transport and result in slow dissolution kinetics. Through targeted application of high-power ultrasound, ionometallurgical processing time can be significantly accelerated. This acceleration is primarily mediated by the cavitation generated in the liquid surrounding the ultrasound source. In this work, we characterise the development of cavitation structure in three DESs of increasing viscosity, and water, via high-speed imaging and parallel acoustic detection. The intensity of the cavitation is characterised in each liquid as a function of input power of a commercially available ultrasonic horn across more than twenty input powers, by monitoring the bubble collapse shockwaves generated by intense, inertially collapsing bubbles. Through analysis of the acoustic emissions and bubble structure dynamics in each liquid, optimal driving powers are identified where cavitation is most effective. In each of the DESs, driving the ultrasonic horn at lower input powers (25%) was associated with greater cavitation performance than at double the driving power (50%).

4.
Faraday Discuss ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007290

RESUMEN

Deep Eutectic Solvents (DESs) have recently been shown to be part of a dense ionic fluid continuum between ionic liquids and concentrated aqueous brines. Charge transport was shown to be governed by fluidity, with no discontinuity between molar conductivity and fluidity irrespective of cation, charge density or ionic radius. By adjusting the activity of water and chloride ions, mass transport, speciation and reactivity can be altered. It has been shown that while brines provide a high chloride content at a lower viscosity than DESs, unlike DESs, brines are unable to prevent metal passivation due to their high water content. This results in the possibility to impart a level of selectivity towards metal dissolution (or passivation) when processing mixed metal materials. Forced convection can be used to avoid the issue of slow mass transport in viscous media, and the use of jets or targeted ultrasound are effective methods for overcoming this issue. High-powered ultrasound was applied to copper, cobalt, and aluminium electrodes undergoing anodic dissolution, and linear sweep voltammetry showed a linear current-voltage response at potentials anodic of the oxidation potential under sonication, with total charge passed being 5 to 134 times greater than under silent conditions. Application of ultrasound to silver and nickel electrodes displayed an initial linear current-voltage response, but the increased water content of the brines resulted in passivation. Mass transport throughout the bulk solution is governed by the forced convection imparted by the ultrasound and ionic species must only migrate across the electrical double layer. It is shown that the anodic dissolution of a range of metals classically expected to passivate, e.g. aluminium, can be significantly accelerated under insonation conditions.

5.
Ultrason Sonochem ; 101: 106701, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38029568

RESUMEN

Deep eutectic solvents (DESs) are an emerging class of ionic liquids that offer a solution to reclaiming technology critical metals (TCMs) from electronic waste, with potential for improved life cycle analysis. The high viscosities typical of DESs, however, impose mass transport limitations such that passive TCM removal generally requires immersion over extended durations, in some cases in the order of hours. It is postulated that, through the targeted application of power ultrasound, delamination of key structures in electronic components immersed in DESs can be significantly accelerated, thereby enabling rapid recovery of TCMs. In this paper, we fully characterise cavitation in a Choline Chloride-Ethylene Glycol DES as a function of sonotrode input power, by the acoustic detection of the bubble collapse shockwave content generated during sonications at more than 20 input powers over the available range. This justifies the selection of two powers for a detailed study of ultrasonically enhanced TCM-delamination from printed circuit boards (PCBs). Dual-perspective high-speed imaging is employed, which facilitates simultaneous observation of TCM removal, and the cavitation evolution and interaction with the PCB surface. Bubble jetting is identified as a key contributor to initial pitting of the TCM layers, exposing the larger underlying copper layer, with the contributions of additional inertial cavitation-mediated phenomena such as bubble-collapse shockwaves also demonstrated as important for delamination. Optimal cavitation activity throughout the sonication then promotes etching of the copper base layer of the PCB structure targeted by the DES, liberating the overlaying TCMs in sections as large as 0.79 mm2. We report a thirtyfold improvement in processing time compared to passive delamination, with sonications at the lower power outperforming those at the higher power. The results demonstrate the potential for industrially scalable recovery of TCMs from the growing quantities of global e-waste, using combined power ultrasonics and DESs.

6.
Angew Chem Int Ed Engl ; 62(46): e202311140, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37753796

RESUMEN

Deep Eutectic Solvents (DESs) have been lauded as novel solvents, but is there really a difference between them and concentrated aqueous brines? They provide a method of adjusting the activity of water and chloride ions which can affect mass transport, speciation and reactivity. This study proposes a continuum of properties across concentrated ionic fluids and uses metal processing as an example. Charge transport is shown to be governed by fluidity and there is no discontinuity between molar conductivity and fluidity irrespective of cation, charge density or ionic radius. Diffusion coefficients of iron(III) and copper(II) chloride in numerous concentrated ionic fluids show the same linear correlation between diffusion coefficient and fluidity. These oxidising agents were used to etch copper, silver and nickel and while the etching rate increased with fluidity for copper, etching of silver and nickel only occurred at high chloride and low water activity as passivation occurred when water activity increased. Overall, brines provide a high chloride content at a lower viscosity than DESs, but unlike DESs, brines are unable to prevent passivation due to their high water content. The results show how selective etching of mixed metal waste streams can be achieved by tuning chloride and water activity.

7.
J Am Chem Soc ; 145(2): 1236-1246, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36607895

RESUMEN

Ruthenium(II) polypyridyl complexes (RPCs) that emit from metal-to-ligand charge transfer (MLCT) states have been developed as DNA probes and are being examined as potential anticancer agents. Here, we report that MLCT-emissive RPCs that bind DNA undergo Förster resonance energy transfer (FRET) with Cy5.5-labeled DNA, forming mega-Stokes shift FRET pairs. Based on this discovery, we developed a simple and rapid FRET binding assay to examine DNA-binding interactions of RPCs with diverse photophysical properties, including non-"light switch" complexes [Ru(dppz)2(5,5'dmb)]2+ and [Ru(PIP)2(5,5'dmb)]2+ (dppz = dipyridophenazine, 5,5'dmb = 5,5'-dimethyl-2,2'-bipyridine, PIP = 2-phenyl-imidazo[4,5-f][1,10]phenanthroline). Binding affinities toward duplex, G-quadruplex, three-way junction, and mismatch DNA were determined, and derived FRET donor-acceptor proximities provide information on potential binding sites. Molecules characterized by this method demonstrate encouraging anticancer properties, including synergy with the PARP inhibitor Olaparib, and mechanistic studies indicate that [Ru(PIP)2(5,5'dmb)]2+ acts to block DNA replication fork progression.


Asunto(s)
Complejos de Coordinación , Rutenio , Rutenio/farmacología , Rutenio/química , Transferencia Resonante de Energía de Fluorescencia , ADN/química , Sitios de Unión , Complejos de Coordinación/farmacología , Complejos de Coordinación/química
8.
Inorg Chem ; 60(20): 15467-15484, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34605234

RESUMEN

A series of ligands have been synthesized based upon a polysubstituted 2-phenylquinoxaline core structure. These ligands introduce different combinations of fluorine and methyl substituents on both the phenyl and quinoxaline constituent rings. The resultant investigation of these species as cyclometalating agents for Ir(III) gave cationic complexes of the form [Ir(C^N)2(bipy)]PF6 (where C^N = cyclometalating ligand; bipy = 2,2'-bipyridine). X-ray crystallographic studies were conducted on four complexes and each revealed the expected distorted octahedral geometry based upon a cis-C,C and trans-N,N ligand arrangement at Ir(III). Supporting computational studies predict that each of the complexes share the same general descriptions for the frontier orbitals. TD-DFT calculations suggest MLCT contributions to the lowest energy absorption and a likely MLCT/ILCT/LLCT nature to the emitting state. Experimentally, the complexes display tunable luminescence across the yellow-orange-red part of the visible spectrum (λem = 579-655 nm).

9.
Chemistry ; 27(10): 3427-3439, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33242225

RESUMEN

Six substituted ligands based upon 2-(naphthalen-1-yl)quinoline-4-carboxylate and 2-(naphthalen-2-yl)quinoline-4-carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII , yielding complexes of the form [Ir(C^N)2 (bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2'-bipyridine). X-ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis-C,C and trans-N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668-693 nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand-centred versus MLCT character instilled by the facets of the ligand structure. Triplet-triplet annihilation upconversion (TTA-UC) measurements demonstrate that the complexes based upon the 1-naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6-6.7 %.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...