Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798622

RESUMEN

Malaria transmission begins when infected female Anopheles mosquitos deposit Plasmodium parasites into the mammalian host's skin during a bloodmeal. The salivary gland-resident sporozoite parasites migrate to the bloodstream, subsequently invading and replicating within hepatocytes. As Anopheles mosquitos are more active at night, with a 24-hour rhythm, we investigated whether their salivary glands are under circadian control, anticipating bloodmeals and modulating sporozoite biology for host encounters. Here we show that approximately half of the mosquito salivary gland transcriptome, particularly genes essential for efficient bloodmeals such as anti-blood clotting factors, exhibits circadian rhythmic expression. Furthermore, we demonstrate that mosquitoes prefer to feed during nighttime, with the amount of blood ingested varying cyclically throughout the day. Notably, we show a substantial subset of the sporozoite transcriptome cycling throughout the day. These include genes involved in parasite motility, potentially modulating the ability to initiate infection at different times of day. Thus, although sporozoites are typically considered quiescent, our results demonstrate their transcriptional activity, revealing robust daily rhythms of gene expression. Our findings suggest a circadian evolutionary relationship between the vector, parasite and mammalian host that together modulate malaria transmission.

2.
PLoS Pathog ; 20(2): e1011535, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38335237

RESUMEN

A better mechanistic understanding of virus-host dependencies can help reveal vulnerabilities and identify opportunities for therapeutic intervention. Of particular interest are essential interactions that enable production of viral proteins, as those could target an early step in the virus lifecycle. Here, we use subcellular proteomics, ribosome profiling analyses and reporter assays to detect changes in protein synthesis dynamics during SARS-CoV-2 (CoV2) infection. We identify specific translation factors and molecular chaperones that are used by CoV2 to promote the synthesis and maturation of its own proteins. These can be targeted to inhibit infection, without major toxicity to the host. We also find that CoV2 non-structural protein 1 (Nsp1) cooperates with initiation factors EIF1 and 1A to selectively enhance translation of viral RNA. When EIF1/1A are depleted, more ribosomes initiate translation from a conserved upstream CUG start codon found in all genomic and subgenomic viral RNAs. This results in higher translation of an upstream open reading frame (uORF1) and lower translation of the main ORF, altering the stoichiometry of viral proteins and attenuating infection. Replacing the upstream CUG with AUG strongly inhibits translation of the main ORF independently of Nsp1, EIF1, or EIF1A. Taken together, our work describes multiple dependencies of CoV2 on host biosynthetic networks and proposes a model for dosage control of viral proteins through Nsp1-mediated control of translation start site selection.


Asunto(s)
COVID-19 , ARN Viral , Humanos , ARN Viral/genética , SARS-CoV-2/genética , COVID-19/genética , Factores de Iniciación de Péptidos , Proteínas Virales
3.
J Proteome Res ; 22(12): 3773-3779, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910793

RESUMEN

Accurate measurements of the molecular composition of single cells will be necessary for understanding the relationship between gene expression and function in diverse cell types. One of the most important phenotypes that differs between cells is their size, which was recently shown to be an important determinant of proteome composition in populations of similarly sized cells. We, therefore, sought to test if the effects of the cell size on protein concentrations were also evident in single-cell proteomics data. Using the relative concentrations of a set of reference proteins to estimate a cell's DNA-to-cell volume ratio, we found that differences in the cell size explain a significant amount of cell-to-cell variance in two published single-cell proteome data sets.


Asunto(s)
Proteoma , Proteoma/metabolismo , Tamaño de la Célula , Fenotipo
4.
iScience ; 26(11): 108143, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37915599

RESUMEN

Studies have reported increased intestinal permeability in multiple sclerosis (MS) patients and its mouse model experimental autoimmune encephalomyelitis (EAE). However, the mechanisms driving increased intestinal permeability that in turn exacerbate neuroinflammation during EAE remain unclear. Here we showed that vancomycin preserved the integrity of the intestinal barrier, while also suppressing gut trypsin activity, enhancing the relative abundance of specific Lactobacilli and ameliorating disease during EAE. Furthermore, Lactobacilli enriched in the gut of vancomycin-treated EAE mice at day 3 post immunization negatively correlated with gut trypsin activity and EAE severity. In untreated EAE mice, we observed increased intestinal permeability and increased intestinal protease activated receptor 2 (PAR2) expression at day 3 post immunization. Prior studies have shown that trypsin increases intestinal permeability by activating PAR2. Our results suggest that the interaction between intestinal PAR2 and trypsin may be a key modulator of intestinal permeability and disease severity during EAE.

5.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37905015

RESUMEN

Cell size is tightly controlled in healthy tissues and single-celled organisms, but it remains unclear how size influences cell physiology. Increasing cell size was recently shown to remodel the proteomes of cultured human cells, demonstrating that large and small cells of the same type can be biochemically different. Here, we corroborate these results in mouse hepatocytes and extend our analysis using yeast. We find that size-dependent proteome changes are highly conserved and mostly independent of metabolic state. As eukaryotic cells grow larger, the dilution of the genome elicits a starvation-like proteome phenotype, suggesting that growth in large cells is limited by the genome in a manner analogous to a limiting nutrient. We also demonstrate that the proteomes of replicatively-aged yeast are primarily determined by their large size. Overall, our data suggest that genome concentration is a universal determinant of proteome content in growing cells.

6.
Microbiome ; 11(1): 176, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550758

RESUMEN

BACKGROUND: The high diversity and complexity of the microbial community make it a formidable challenge to identify and quantify the large number of proteins expressed in the community. Conventional metaproteomics approaches largely rely on accurate identification of the MS/MS spectra to their corresponding short peptides in the digested samples, followed by protein inference and subsequent taxonomic and functional analysis of the detected proteins. These approaches are dependent on the availability of protein sequence databases derived either from sample-specific metagenomic data or from public repositories. Due to the incompleteness and imperfections of these protein sequence databases, and the preponderance of homologous proteins expressed by different bacterial species in the community, this computational process of peptide identification and protein inference is challenging and error-prone, which hinders the comparison of metaproteomes across multiple samples. RESULTS: We developed metaSpectraST, an unsupervised and database-independent metaproteomics workflow, which quantitatively profiles and compares metaproteomics samples by clustering experimentally observed MS/MS spectra based on their spectral similarity. We applied metaSpectraST to fecal samples collected from littermates of two different mother mice right after weaning. Quantitative proteome profiles of the microbial communities of different mice were obtained without any peptide-spectrum identification and used to evaluate the overall similarity between samples and highlight any differentiating markers. Compared to the conventional database-dependent metaproteomics analysis, metaSpectraST is more successful in classifying the samples and detecting the subtle microbiome changes of mouse gut microbiomes post-weaning. metaSpectraST could also be used as a tool to select the suitable biological replicates from samples with wide inter-individual variation. CONCLUSIONS: metaSpectraST enables rapid profiling of metaproteomic samples quantitatively, without the need for constructing the protein sequence database or identification of the MS/MS spectra. It maximally preserves information contained in the experimental MS/MS spectra by clustering all of them first and thus is able to better profile the complex microbial communities and highlight their functional changes, as compared with conventional approaches. tag the videobyte in this section as ESM4 Video Abstract.


Asunto(s)
Microbiota , Espectrometría de Masas en Tándem , Animales , Ratones , Flujo de Trabajo , Proteómica , Microbiota/genética , Péptidos
7.
bioRxiv ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37461541

RESUMEN

A better mechanistic understanding of virus-host interactions can help reveal vulnerabilities and identify opportunities for therapeutic interventions. Of particular interest are essential interactions that enable production of viral proteins, as those could target an early step in the virus lifecycle. Here, we use subcellular proteomics, ribosome profiling analyses and reporter assays to detect changes in polysome composition and protein synthesis during SARS-CoV-2 (CoV2) infection. We identify specific translation factors and molecular chaperones whose inhibition impairs infectious particle production without major toxicity to the host. We find that CoV2 non-structural protein Nsp1 selectively enhances virus translation through functional interactions with initiation factor EIF1A. When EIF1A is depleted, more ribosomes initiate translation from an upstream CUG start codon, inhibiting translation of non-structural genes and reducing viral titers. Together, our work describes multiple dependencies of CoV2 on host biosynthetic networks and identifies druggable targets for potential antiviral development.

8.
J Leukoc Biol ; 114(5): 387-403, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37201912

RESUMEN

Systemic juvenile idiopathic arthritis is a chronic pediatric inflammatory disease of unknown etiology, characterized by fever, rash, hepatosplenomegaly, serositis, and arthritis. We hypothesized that intercellular communication, mediated by extracellular vesicles, contributes to systemic juvenile idiopathic arthritis pathogenesis and that the number and cellular sources of extracellular vesicles would differ between inactive and active states of systemic juvenile idiopathic arthritis and healthy controls. We evaluated plasma from healthy pediatric controls and patients with systemic juvenile idiopathic arthritis with active systemic flare or inactive disease. We isolated extracellular vesicles by size exclusion chromatography and determined total extracellular vesicle abundance and size distribution using microfluidic resistive pulse sensing. Cell-specific extracellular vesicle subpopulations were measured by nanoscale flow cytometry. Isolated extracellular vesicles were validated using a variety of ways, including nanotracking and cryo-electron microscopy. Extracellular vesicle protein content was analyzed in pooled samples using mass spectrometry. Total extracellular vesicle concentration did not significantly differ between controls and patients with systemic juvenile idiopathic arthritis. Extracellular vesicles with diameters <200 nm were the most abundant, including the majority of cell-specific extracellular vesicle subpopulations. Patients with systemic juvenile idiopathic arthritis had significantly higher levels of extracellular vesicles from activated platelets, intermediate monocytes, and chronically activated endothelial cells, with the latter significantly more elevated in active systemic juvenile idiopathic arthritis relative to inactive disease and controls. Protein analysis of isolated extracellular vesicles from active patients showed a proinflammatory profile, uniquely expressing heat shock protein 47, a stress-inducible protein. Our findings indicate that multiple cell types contribute to altered extracellular vesicle profiles in systemic juvenile idiopathic arthritis. The extracellular vesicle differences between systemic juvenile idiopathic arthritis disease states and healthy controls implicate extracellular vesicle-mediated cellular crosstalk as a potential driver of systemic juvenile idiopathic arthritis disease activity.


Asunto(s)
Artritis Juvenil , Vesículas Extracelulares , Humanos , Niño , Microscopía por Crioelectrón , Células Endoteliales , Monocitos
9.
Mol Cell ; 82(24): 4627-4646.e14, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36417913

RESUMEN

Cell lineage specification is accomplished by a concerted action of chromatin remodeling and tissue-specific transcription factors. However, the mechanisms that induce and maintain appropriate lineage-specific gene expression remain elusive. Here, we used an unbiased proteomics approach to characterize chromatin regulators that mediate the induction of neuronal cell fate. We found that Tip60 acetyltransferase is essential to establish neuronal cell identity partly via acetylation of the histone variant H2A.Z. Despite its tight correlation with gene expression and active chromatin, loss of H2A.Z acetylation had little effect on chromatin accessibility or transcription. Instead, loss of Tip60 and acetyl-H2A.Z interfered with H3K4me3 deposition and activation of a unique subset of silent, lineage-restricted genes characterized by a bivalent chromatin configuration at their promoters. Altogether, our results illuminate the mechanisms underlying bivalent chromatin activation and reveal that H2A.Z acetylation regulates neuronal fate specification by establishing epigenetic competence for bivalent gene activation and cell lineage transition.


Asunto(s)
Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Acetilación , Activación Transcripcional , Cromatina/genética , Procesamiento Proteico-Postraduccional , Nucleosomas
10.
Front Cell Dev Biol ; 10: 980721, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36133920

RESUMEN

Increasing cell size drives changes to the proteome, which affects cell physiology. As cell size increases, some proteins become more concentrated while others are diluted. As a result, the state of the cell changes continuously with increasing size. In addition to these proteomic changes, large cells have a lower growth rate (protein synthesis rate per unit volume). That both the cell's proteome and growth rate change with cell size suggests they may be interdependent. To test this, we used quantitative mass spectrometry to measure how the proteome changes in response to the mTOR inhibitor rapamycin, which decreases the cellular growth rate and has only a minimal effect on cell size. We found that large cell size and mTOR inhibition, both of which lower the growth rate of a cell, remodel the proteome in similar ways. This suggests that many of the effects of cell size are mediated by the size-dependent slowdown of the cellular growth rate. For example, the previously reported size-dependent expression of some senescence markers could reflect a cell's declining growth rate rather than its size per se. In contrast, histones and other chromatin components are diluted in large cells independently of the growth rate, likely so that they remain in proportion with the genome. Finally, size-dependent changes to the cell's growth rate and proteome composition are still apparent in cells continually exposed to a saturating dose of rapamycin, which indicates that cell size can affect the proteome independently of mTORC1 signaling. Taken together, our results clarify the dependencies between cell size, growth, mTOR activity, and the proteome remodeling that ultimately controls many aspects of cell physiology.

11.
Mol Cell ; 82(17): 3255-3269.e8, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35987199

RESUMEN

Cell size is tightly controlled in healthy tissues, but it is unclear how deviations in cell size affect cell physiology. To address this, we measured how the cell's proteome changes with increasing cell size. Size-dependent protein concentration changes are widespread and predicted by subcellular localization, size-dependent mRNA concentrations, and protein turnover. As proliferating cells grow larger, concentration changes typically associated with cellular senescence are increasingly pronounced, suggesting that large size may be a cause rather than just a consequence of cell senescence. Consistent with this hypothesis, larger cells are prone to replicative, DNA-damage-induced, and CDK4/6i-induced senescence. Size-dependent changes to the proteome, including those associated with senescence, are not observed when an increase in cell size is accompanied by an increase in ploidy. Together, our findings show how cell size could impact many aspects of cell physiology by remodeling the proteome and provide a rationale for cell size control and polyploidization.


Asunto(s)
Senescencia Celular , Proteoma , Tamaño de la Célula , Senescencia Celular/fisiología , Daño del ADN , Proteoma/genética
12.
Ann Neurol ; 92(2): 279-291, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35466441

RESUMEN

OBJECTIVE: Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD), is a severe pediatric disorder of uncertain etiology resulting in hypothalamic dysfunction and frequent sudden death. Frequent co-occurrence of neuroblastic tumors have fueled suspicion of an autoimmune paraneoplastic neurological syndrome (PNS); however, specific anti-neural autoantibodies, a hallmark of PNS, have not been identified. Our objective is to determine if an autoimmune paraneoplastic etiology underlies ROHHAD. METHODS: Immunoglobulin G (IgG) from pediatric ROHHAD patients (n = 9), non-inflammatory individuals (n = 100) and relevant pediatric controls (n = 25) was screened using a programmable phage display of the human peptidome (PhIP-Seq). Putative ROHHAD-specific autoantibodies were orthogonally validated using radioactive ligand binding and cell-based assays. Expression of autoantibody targets in ROHHAD tumor and healthy brain tissue was assessed with immunohistochemistry and mass spectrometry, respectively. RESULTS: Autoantibodies to ZSCAN1 were detected in ROHHAD patients by PhIP-Seq and orthogonally validated in 7/9 ROHHAD patients and 0/125 controls using radioactive ligand binding and cell-based assays. Expression of ZSCAN1 in ROHHAD tumor and healthy human brain tissue was confirmed. INTERPRETATION: Our results support the notion that tumor-associated ROHHAD syndrome is a pediatric PNS, potentially initiated by an immune response to peripheral neuroblastic tumor. ZSCAN1 autoantibodies may aid in earlier, accurate diagnosis of ROHHAD syndrome, thus providing a means toward early detection and treatment. This work warrants follow-up studies to test sensitivity and specificity of a novel diagnostic test. Last, given the absence of the ZSCAN1 gene in rodents, our study highlights the value of human-based approaches for detecting novel PNS subtypes. ANN NEUROL 2022;92:279-291.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Enfermedades del Sistema Endocrino , Enfermedades Hipotalámicas , Síndromes Paraneoplásicos del Sistema Nervioso , Autoanticuerpos , Niño , Humanos , Enfermedades Hipotalámicas/genética , Hipoventilación/genética , Ligandos , Síndromes Paraneoplásicos del Sistema Nervioso/diagnóstico , Síndrome
13.
Nat Commun ; 13(1): 888, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173144

RESUMEN

Celiac disease (CeD) is an autoimmune disorder induced by consuming gluten proteins from wheat, barley, and rye. Glutens resist gastrointestinal proteolysis, resulting in peptides that elicit inflammation in patients with CeD. Despite well-established connections between glutens and CeD, chemically defined, bioavailable peptides produced from dietary proteins have never been identified from humans in an unbiased manner. This is largely attributable to technical challenges, impeding our knowledge of potentially diverse peptide species that encounter the immune system. Here, we develop a liquid chromatographic-mass spectrometric workflow for untargeted sequence analysis of the urinary peptidome. We detect over 600 distinct dietary peptides, of which ~35% have a CeD-relevant T cell epitope and ~5% are known to stimulate innate immune responses. Remarkably, gluten peptides from patients with CeD qualitatively and quantitatively differ from controls. Our results provide a new foundation for understanding gluten immunogenicity, improving CeD management, and characterizing the dietary and urinary peptidomes.


Asunto(s)
Enfermedad Celíaca/inmunología , Glútenes/análisis , Proteoma/análisis , Orina/química , Secuencia de Aminoácidos , Enfermedad Celíaca/patología , Cromatografía Liquida , Epítopos de Linfocito T/inmunología , Glútenes/inmunología , Glútenes/metabolismo , Hordeum/química , Humanos , Espectrometría de Masas , Secale/química , Linfocitos T/inmunología , Triticum/química
14.
Cell Host Microbe ; 30(2): 260-272.e5, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35051349

RESUMEN

Efforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions. Upon colonization of germ-free mice, community composition was maintained, and the host proteome resembled the host from which the community was derived. Treatment with ciprofloxacin in vivo increased susceptibility to Salmonella invasion in vitro, and the in vitro response to ciprofloxacin was predictive of compositional changes observed in vivo, including the resilience and sensitivity of each Bacteroides species. These findings demonstrate that stool-derived in vitro communities can serve as a powerful system for microbiota research.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias , Bacteroides , Heces/microbiología , Humanos , Ratones
15.
Mol Cell Proteomics ; 21(3): 100204, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35085787

RESUMEN

Major histocompatibility complex class II (MHC-II) antigen presentation underlies a wide range of immune responses in health and disease. However, how MHC-II antigen presentation is regulated by the peptide-loading catalyst HLA-DM (DM), its associated modulator, HLA-DO (DO), is incompletely understood. This is due largely to technical limitations: model antigen-presenting cell (APC) systems that express these MHC-II peptidome regulators at physiologically variable levels have not been described. Likewise, computational prediction tools that account for DO and DM activities are not presently available. To address these gaps, we created a panel of single MHC-II allele, HLA-DR4-expressing APC lines that cover a wide range of DO:DM ratio states. Using a combined immunopeptidomic and proteomic discovery strategy, we measured the effects DO:DM ratios have on peptide presentation by surveying over 10,000 unique DR4-presented peptides. The resulting data provide insight into peptide characteristics that influence their presentation with increasing DO:DM ratios. These include DM sensitivity, peptide abundance, binding affinity and motif, peptide length, and choice of binding register along the source protein. These findings have implications for designing improved HLA-II prediction algorithms and research strategies for dissecting the variety of functions that different APCs serve in the body.


Asunto(s)
Presentación de Antígeno , Antígenos HLA-D , Antígenos de Histocompatibilidad Clase II , Proteómica , Células Presentadoras de Antígenos , Línea Celular , Antígenos HLA-DR , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Péptidos/metabolismo
16.
Gut ; 71(3): 509-520, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33758004

RESUMEN

OBJECTIVE: Primary sclerosing cholangitis (PSC) is in 70% of cases associated with inflammatory bowel disease. The hypermorphic T108M variant of the orphan G protein-coupled receptor GPR35 increases risk for PSC and ulcerative colitis (UC), conditions strongly predisposing for inflammation-associated liver and colon cancer. Lack of GPR35 reduces tumour numbers in mouse models of spontaneous and colitis associated cancer. The tumour microenvironment substantially determines tumour growth, and tumour-associated macrophages are crucial for neovascularisation. We aim to understand the role of the GPR35 pathway in the tumour microenvironment of spontaneous and colitis-associated colon cancers. DESIGN: Mice lacking GPR35 on their macrophages underwent models of spontaneous colon cancer or colitis-associated cancer. The role of tumour-associated macrophages was then assessed in biochemical and functional assays. RESULTS: Here, we show that GPR35 on macrophages is a potent amplifier of tumour growth by stimulating neoangiogenesis and tumour tissue remodelling. Deletion of Gpr35 in macrophages profoundly reduces tumour growth in inflammation-associated and spontaneous tumour models caused by mutant tumour suppressor adenomatous polyposis coli. Neoangiogenesis and matrix metalloproteinase activity is promoted by GPR35 via Na/K-ATPase-dependent ion pumping and Src activation, and is selectively inhibited by a GPR35-specific pepducin. Supernatants from human inducible-pluripotent-stem-cell derived macrophages carrying the UC and PSC risk variant stimulate tube formation by enhancing the release of angiogenic factors. CONCLUSIONS: Activation of the GPR35 pathway promotes tumour growth via two separate routes, by directly augmenting proliferation in epithelial cells that express the receptor, and by coordinating macrophages' ability to create a tumour-permissive environment.


Asunto(s)
Colangitis Esclerosante/patología , Colitis Ulcerosa/patología , Neoplasias del Colon/etiología , Neovascularización Patológica/etiología , Receptores Acoplados a Proteínas G/fisiología , Animales , Colangitis Esclerosante/genética , Colitis Ulcerosa/genética , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Macrófagos/fisiología , Ratones , Microambiente Tumoral
17.
Nature ; 600(7889): 494-499, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34880498

RESUMEN

Physical exercise is generally beneficial to all aspects of human and animal health, slowing cognitive ageing and neurodegeneration1. The cognitive benefits of physical exercise are tied to an increased plasticity and reduced inflammation within the hippocampus2-4, yet little is known about the factors and mechanisms that mediate these effects. Here we show that 'runner plasma', collected from voluntarily running mice and infused into sedentary mice, reduces baseline neuroinflammatory gene expression and experimentally induced brain inflammation. Plasma proteomic analysis revealed a concerted increase in complement cascade inhibitors including clusterin (CLU). Intravenously injected CLU binds to brain endothelial cells and reduces neuroinflammatory gene expression in a mouse model of acute brain inflammation and a mouse model of Alzheimer's disease. Patients with cognitive impairment who participated in structured exercise for 6 months had higher plasma levels of CLU. These findings demonstrate the existence of anti-inflammatory exercise factors that are transferrable, target the cerebrovasculature and benefit the brain, and are present in humans who engage in exercise.


Asunto(s)
Enfermedad de Alzheimer , Encefalitis , Enfermedad de Alzheimer/metabolismo , Animales , Clusterina/genética , Clusterina/metabolismo , Células Endoteliales/metabolismo , Humanos , Ratones , Proteómica
18.
Cell ; 184(16): 4137-4153.e14, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34256014

RESUMEN

Diet modulates the gut microbiome, which in turn can impact the immune system. Here, we determined how two microbiota-targeted dietary interventions, plant-based fiber and fermented foods, influence the human microbiome and immune system in healthy adults. Using a 17-week randomized, prospective study (n = 18/arm) combined with -omics measurements of microbiome and host, including extensive immune profiling, we found diet-specific effects. The high-fiber diet increased microbiome-encoded glycan-degrading carbohydrate active enzymes (CAZymes) despite stable microbial community diversity. Although cytokine response score (primary outcome) was unchanged, three distinct immunological trajectories in high-fiber consumers corresponded to baseline microbiota diversity. Alternatively, the high-fermented-food diet steadily increased microbiota diversity and decreased inflammatory markers. The data highlight how coupling dietary interventions to deep and longitudinal immune and microbiome profiling can provide individualized and population-wide insight. Fermented foods may be valuable in countering the decreased microbiome diversity and increased inflammation pervasive in industrialized society.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Inmunidad , Biodiversidad , Fibras de la Dieta/farmacología , Conducta Alimentaria , Femenino , Alimentos Fermentados , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Inflamación/patología , Masculino , Persona de Mediana Edad , Transducción de Señal/efectos de los fármacos
19.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34117124

RESUMEN

Environmental fluctuations are a common challenge for single-celled organisms; enteric bacteria such as Escherichia coli experience dramatic changes in nutrient availability, pH, and temperature during their journey into and out of the host. While the effects of altered nutrient availability on gene expression and protein synthesis are well known, their impacts on cytoplasmic dynamics and cell morphology have been largely overlooked. Here, we discover that depletion of utilizable nutrients results in shrinkage of E. coli's inner membrane from the cell wall. Shrinkage was accompanied by an ∼17% reduction in cytoplasmic volume and a concurrent increase in periplasmic volume. Inner membrane retraction after sudden starvation occurred almost exclusively at the new cell pole. This phenomenon was distinct from turgor-mediated plasmolysis and independent of new transcription, translation, or canonical starvation-sensing pathways. Cytoplasmic dry-mass density increased during shrinkage, suggesting that it is driven primarily by loss of water. Shrinkage was reversible: upon a shift to nutrient-rich medium, expansion started almost immediately at a rate dependent on carbon source quality. A robust entry into and recovery from shrinkage required the Tol-Pal system, highlighting the importance of envelope coupling during shrinkage and recovery. Klebsiella pneumoniae also exhibited shrinkage when shifted to carbon-free conditions, suggesting a conserved phenomenon. These findings demonstrate that even when Gram-negative bacterial growth is arrested, cell morphology and physiology are still dynamic.


Asunto(s)
Citoplasma/fisiología , Escherichia coli/fisiología , Carbono/deficiencia , Carbono/farmacología , Citoplasma/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Nitrógeno/análisis , Fósforo/análisis
20.
Front Immunol ; 12: 662443, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936100

RESUMEN

All nucleated mammalian cells express major histocompatibility complex (MHC) proteins that present peptides on cell surfaces for immune surveillance. These MHC-presented peptides (pMHC) are necessary for directing T-cell responses against cells harboring non-self antigens derived from pathogens or from somatic mutations. Alterations in tumor-specific antigen repertoires - particularly novel MHC presentation of mutation-bearing peptides (neoantigens) - can be potent targets of anti-tumor immune responses. Here we employed an integrated genomic and proteomic antigen discovery strategy aimed at measuring how interferon gamma (IFN-γ) alters antigen presentation, using a human lymphoma cell line, GRANTA-519. IFN-γ treatment resulted in 126 differentially expressed proteins (2% of all quantified proteins), which included components of antigen presentation machinery and interferon signaling pathways, and MHC molecules themselves. In addition, several proteasome subunits were found to be modulated, consistent with previous reports of immunoproteasome induction by IFN-γ exposure. This finding suggests that a modest proteomic response to IFN-γ could create larger alteration to cells' antigen/epitope repertoires. Accordingly, MHC immunoprecipitation followed by mass spectrometric analysis of eluted peptide repertoires revealed exclusive signatures of IFN-γ induction, with 951 unique peptides reproducibly presented by MHC-I and 582 presented by MHC-II. Furthermore, an additional set of pMHCs including several candidate neoantigens, distinguished control and the IFN-γ samples by their altered relative abundances. Accordingly, we developed a classification system to distinguish peptides which are differentially presented due to altered expression from novel peptides resulting from changes in antigen processing. Taken together, these data demonstrate that IFN-γ can re-shape antigen repertoires by identity and by abundance. Extending this approach to models with greater clinical relevance could help develop strategies by which immunopeptide repertoires are intentionally reshaped to improve endogenous or vaccine-induced anti-tumor immune responses and potentially anti-viral immune responses.


Asunto(s)
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/aislamiento & purificación , Genómica , Péptidos/inmunología , Complejo de la Endopetidasa Proteasomal , Proteómica , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Epítopos/inmunología , Humanos , Interferón gamma/farmacología , Linfoma , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...