Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1202208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37449271

RESUMEN

Introduction: People with DS are highly predisposed to Alzheimer's disease (AD) and demonstrate very similar clinical and pathological features. Ts65Dn mice are widely used and serve as the best-characterized animal model of DS. Methods: We undertook studies to characterize age-related changes for AD-relevant markers linked to Aß, Tau, and phospho-Tau, axonal structure, inflammation, and behavior. Results: We found age related changes in both Ts65Dn and 2N mice. Relative to 2N mice, Ts65Dn mice showed consistent increases in Aß40, insoluble phospho-Tau, and neurofilament light protein. These changes were correlated with deficits in learning and memory. Discussion: These data have implications for planning future experiments aimed at preventing disease-related phenotypes and biomarkers. Interventions should be planned to address specific manifestations using treatments and treatment durations adequate to engage targets to prevent the emergence of phenotypes.

2.
Neurobiol Dis ; 179: 106050, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36809847

RESUMEN

Effective therapies are urgently needed to safely target TDP-43 pathology as it is closely associated with the onset and development of devastating diseases such as frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). In addition, TDP-43 pathology is present as a co-pathology in other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Our approach is to develop a TDP-43-specific immunotherapy that exploits Fc gamma-mediated removal mechanisms to limit neuronal damage while maintaining physiological TDP-43 function. Thus, using both in vitro mechanistic studies in conjunction with the rNLS8 and CamKIIa inoculation mouse models of TDP-43 proteinopathy, we identified the key targeting domain in TDP-43 to accomplish these therapeutic objectives. Targeting the C-terminal domain of TDP-43 but not the RNA recognition motifs (RRM) reduces TDP-43 pathology and avoids neuronal loss in vivo. We demonstrate that this rescue is dependent on Fc receptor-mediated immune complex uptake by microglia. Furthermore, monoclonal antibody (mAb) treatment enhances phagocytic capacity of ALS patient-derived microglia, providing a mechanism to restore the compromised phagocytic function in ALS and FTD patients. Importantly, these beneficial effects are achieved while preserving physiological TDP-43 activity. Our findings demonstrate that a mAb targeting the C-terminal domain of TDP-43 limits pathology and neurotoxicity, enabling clearance of misfolded TDP-43 through microglia engagement, and supporting the clinical strategy to target TDP-43 by immunotherapy. SIGNIFICANCE STATEMENT: TDP-43 pathology is associated with various devastating neurodegenerative disorders with high unmet medical needs such as frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Thus, safely and effectively targeting pathological TDP-43 represents a key paradigm for biotechnical research as currently there is little in clinical development. After years of research, we have determined that targeting the C-terminal domain of TDP-43 rescues multiple patho-mechanisms involved in disease progression in two animal models of FTD/ALS. In parallel, importantly, our studies establish that this approach does not alter the physiological functions of this ubiquitously expressed and indispensable protein. Together, our findings substantially contribute to the understanding of TDP-43 pathobiology and support the prioritization for clinical testing of immunotherapy approaches targeting TDP-43.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Pick , Ratones , Animales , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Enfermedad de Alzheimer/genética , Neuroprotección , Proteínas de Unión al ADN/metabolismo , Inmunoterapia
3.
ChemMedChem ; 10(4): 688-714, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25735812

RESUMEN

Sphingosine-1-phosphate (S1P) receptor agonists have shown promise as therapeutic agents for multiple sclerosis (MS) due to their regulatory roles within the immune, central nervous system, and cardiovascular system. Here, the design and optimization of novel [1,2,4]oxadiazole derivatives as selective S1P receptor agonists are described. The structure-activity relationship exploration was carried out on the three dominant segments of the series: modification of the polar head group (P), replacement of the oxadiazole linker (L) with different five-membered heterocycles, and the use of diverse 2,2'-disubstituted biphenyl moieties as the hydrophobic tail (H). All three segments have a significant impact on potency, S1P receptor subtype selectivity, physicochemical properties, and in vitro absorption, distribution, metabolism, excretion and toxicity (ADMET) profile of the compounds. From these optimization studies, a selective S1P1 agonist, N-methyl-N-(4-{5-[2-methyl-2'-(trifluoromethyl)biphenyl-4-yl]-1,2,4-oxadiazol-3-yl}benzyl)glycine (45), and a dual S1P1,5 agonist, N-methyl-N-(3-{5-[2'-methyl-2-(trifluoromethyl)biphenyl-4-yl]-1,2,4-oxadiazol-3-yl}benzyl)glycine (49), emerged as frontrunners. These compounds distribute predominantly in lymph nodes and brain over plasma and induce long lasting decreases in lymphocyte count after oral administration. When evaluated head-to-head in an experimental autoimmune encephalomyelitis mouse model, together with the marketed drug fingolimod, a pan-S1P receptor agonist, S1P1,5 agonist 49 demonstrated comparable efficacy while S1P1 -selective agonist 45 was less potent. Compound 49 is not a prodrug, and its improved property profile should translate into a safer treatment of relapsing forms of MS.


Asunto(s)
Diseño de Fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Factores Inmunológicos/química , Factores Inmunológicos/uso terapéutico , Oxadiazoles/química , Oxadiazoles/uso terapéutico , Receptores de Lisoesfingolípidos/agonistas , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Humanos , Factores Inmunológicos/farmacocinética , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Esclerosis Múltiple/tratamiento farmacológico , Oxadiazoles/farmacocinética , Receptores de Lisoesfingolípidos/inmunología , Relación Estructura-Actividad
4.
J Biol Chem ; 288(4): 2521-31, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23209290

RESUMEN

γ-Secretase is a large enzyme complex comprising presenilin, nicastrin, presenilin enhancer 2, and anterior pharynx-defective 1 that mediates the intramembrane proteolysis of a large number of proteins including amyloid precursor protein and Notch. Recently, a novel γ-secretase activating protein (GSAP) was identified that interacts with γ-secretase and the C-terminal fragment of amyloid precursor protein to selectively increase amyloid-ß production. In this study we have further characterized the role of endogenous and exogenous GSAP in the regulation of γ-secretase activity and amyloid-ß production in vitro. Knockdown of GSAP expression in N2a cells decreased amyloid-ß levels. In contrast, overexpression of GSAP in HEK cells expressing amyloid precursor protein or in N2a cells had no overt effect on amyloid-ß generation. Likewise, purified recombinant GSAP had no effect on amyloid-ß generation in two distinct in vitro γ-secretase assays. In subsequent cellular studies with imatinib, a kinase inhibitor that reportedly prevents the interaction of GSAP with the C-terminal fragment of amyloid precursor protein, a concentration-dependent decrease in amyloid-ß levels was observed. However, no interaction between GSAP and the C-terminal fragment of amyloid precursor protein was evident in co-immunoprecipitation studies. In addition, subchronic administration of imatinib to rats had no effect on brain amyloid-ß levels. In summary, these findings suggest the roles of GSAP and imatinib in the regulation of γ-secretase activity and amyloid-ß generation are uncertain.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Regulación de la Expresión Génica , Piperazinas/farmacología , Proteínas/química , Pirimidinas/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Benzamidas , Encéfalo/metabolismo , Línea Celular Tumoral , Humanos , Mesilato de Imatinib , Masculino , Ratones , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo
5.
Bioorg Med Chem Lett ; 20(5): 1516-9, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20149651

RESUMEN

The discovery of a novel series of S1P1 agonists is described. Starting from a micromolar HTS positive, iterative optimization gave rise to several single-digit nanomolar S1P1 agonists. The compounds were able to induce internalization of the S1P1 receptor, and a selected compound was shown to be able to induce lymphopenia in mice after oral dosing.


Asunto(s)
Antineoplásicos/química , Receptores de Lisoesfingolípidos/agonistas , Administración Oral , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Descubrimiento de Drogas , Clorhidrato de Fingolimod , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Glicoles de Propileno/química , Glicoles de Propileno/farmacología , Ratas , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...