Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Environ Sci Pollut Res Int ; 30(54): 115064-115080, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37878179

RESUMEN

This study addresses the challenges of biodiesel production costs and waste oil disposal by investigating the use of low-cost waste oil as a feedstock. The impact of heating temperature on biodiesel yield and trace metal levels is examined using response surface methodology (RSM). Optimal conditions for high biodiesel yields (95-98%) from canola oil are determined with a methanol/oil ratio of 12:1, 1 wt% catalyst, and 60-min reaction time. For crude bioglycerol, the optimal conditions involve a methanol/oil ratio of 4.25:1, 2.93 wt% catalyst, and 119.15-min reaction time. Elemental analysis reveals the presence of high-concentration metals like Cu and Zn and low-concentration ones such as Pb, As, Se, and Zr in both oil feedstocks and their respective biodiesel and bioglycerol products. The study demonstrates that thermal stress on canola oil significantly impacts biodiesel and bioglycerol yields and trace metal levels during the transesterification process. The findings contribute to enhancing cost-effectiveness and environmental sustainability in biodiesel production.


Asunto(s)
Brassica napus , Aceites de Plantas , Biocombustibles/análisis , Aceite de Brassica napus , Metanol , Esterificación , Catálisis
3.
ACS Omega ; 8(24): 21664-21676, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37360493

RESUMEN

Biowaste utilization as a carbon source and its transformation into porous carbons have been of great interest to promote environmental remediation owing to biowaste's cost-effectiveness and useful physicochemical properties. In this work, crude glycerol (CG) residue from waste cooking oil transesterification was employed to fabricate mesoporous crude glycerol-based porous carbons (mCGPCs) using mesoporous silica (KIT-6) as a template. The obtained mCGPCs were characterized and compared to commercial activated carbon (AC) and CMK-8, a carbon material prepared using sucrose. The study aimed to evaluate the potential of mCGPC as a CO2 adsorbent and demonstrated its superior adsorption capacity compared to AC and comparable to CMK-8. The X-ray diffraction (XRD) and Raman results clearly depicted the structure of carbon nature with (002) and (100) planes and defect (D) and graphitic (G) bands, respectively. The specific surface area, pore volume, and pore diameter values confirmed the mesoporosity of mCGPC materials. The transmission electron microscopy (TEM) images also clearly revealed the porous nature with the ordered mesopore structure. The mCGPCs, CMK-8, and AC materials were used as CO2 adsorbents under optimized conditions. The mCGPC adsorption capacity (1.045 mmol/g) is superior to that of AC (0.689 mmol/g) and still comparable to that of CMK-8 (1.8 mmol/g). The thermodynamic analyses of the adsorption phenomena are also carried out. This work demonstrates the successful synthesis of a mesoporous carbon material using a biowaste (CG) and its application as a CO2 adsorbent.

4.
J Phys Chem A ; 127(4): 1013-1025, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36669093

RESUMEN

The Claus process is used in natural gas processing plants to treat H2S-rich acid gas to recover sulfur, but the process suffers from catalytic deactivation when aromatic contaminants such as benzene, toluene, ethylbenzene, and xylene isomers (collectively called as BTEX) are present in the acid gas feed. To safeguard the catalytic reactors, it is desired to oxidize aromatic contaminants in the furnace that are present upstream of the catalytic reactors in the process by oxidants present in it. This work develops a reaction mechanism and evaluates the reaction kinetics for the oxidation of phenyl radical by SO using CBS-QBS for reaction energetics and RRKM and transition state theory for reaction kinetics. The mechanism explores the possible products that are formed from the barrierless addition of SO on phenyl through the O atom as well as through the S atom. The exothermicity of the addition reaction is higher when the addition of SO on the aromatic structure takes place through the S atom. The major products formed from phenyl oxidation by SO are cyclopentadienyl, cyclopentadienethiol and thiopyran radicals. A remarkable similarity between the pathways for phenyl radical oxidation by O2 and its oxidation by SO at high temperatures is observed. The proposed reactions and their rate constants are used to conduct reactor simulations to determine the important reactions that contribute to the formation of major products during phenyl-SO reactions and the temperatures suitable for benzene oxidation by SO under process conditions similar to the Claus furnace.

5.
Sci Total Environ ; 859(Pt 1): 160140, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36379328

RESUMEN

Carbon dioxide (CO2) is the top contributor to global warming. On the other, soot particles formed during fuel combustion and released into the atmosphere are harmful and also contribute to global warming. It would therefore be highly advantageous to capture soot and make use of it as a feedstock to synthesize carbon-based materials for applications such as carbon dioxide adsorption. In this work, flame-made diesel soot nanoparticles were used to produce a variety of activated carbons by combined oxidative treatment with hydrogen peroxide (H2O2) and potassium hydroxide (KOH), and their performance towards CO2 adsorption was evaluated. The effect of the chemical activation of soot with H2O2 for different reaction times and with KOH on the physicochemical properties of the activated carbons was investigated and compared to fresh soot. Interestingly, hollow aggregates of carbonaceous nanoparticles of a high interplanar distance, reduced polycyclic aromatic hydrocarbons (PAH) size, shorter PAH stacks, mesoporous structure, and a high content of oxygen functionalities along with other structural defects in PAHs were obtained in the synthesized activated carbons. Among the various analysis techniques employed, Raman spectroscopy indicated that the ID/IG ratio in soot decreased after simultaneous chemical treatment, though it did not indicate any enhancement in the graphitic character since the carbonyl and carboxylic containing PAHs and monovacancies (which cause defects in PAHs) also contribute to the increase in the intensity of the graphitic band. The activated carbons possessed promising CO2 adsorption capacities, adsorption kinetics and CO2/N2 selectivity. For example, one of the activated carbons, following H2O2 treatment for 9 h and a subsequent KOH activation, exhibited a CO2 adsorption capacity of 1.78 mmol/g at 1 bar and 25 °C, representing an increase of 161 % in capacity as compared to fresh soot. Hollow aggregates of carbonaceous nanoparticles consisting of shorter PAHs with a larger number of defects led to enhanced CO2 adsorption rate and CO2/N2 selectivity on activated carbons.


Asunto(s)
Dióxido de Carbono , Hidrocarburos Policíclicos Aromáticos , Dióxido de Carbono/análisis , Hollín , Peróxido de Hidrógeno/análisis , Adsorción , Carbón Orgánico/química , Hidrocarburos Policíclicos Aromáticos/análisis
6.
Chem Commun (Camb) ; 55(57): 8274-8277, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31246182

RESUMEN

Dinuclear Co-based catalysts are used for the coupling reaction of epoxides and CO2 in the presence of a cocatalyst. The easily recyclable catalysts efficiently complete the coupling of CO2 with various epoxides into industrially important cyclic carbonates at low catalyst loading and displayed high catalytic activity under relatively low CO2 pressure and solvent-free conditions. The maximum TON (168 600) and TOF (3333 h-1) obtained in this work are the highest among the reported Co-complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...