Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 114: 371-382, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683961

RESUMEN

Recent translational work has shown that fibromyalgia might be an autoimmune condition with pathogenic mechanisms mediated by a peripheral, pain-inducing action of immunoglobulin G (IgG) antibodies binding to satellite glia cells (SGC) in the dorsal root ganglia. A first clinical assessment of the postulated autoimmunity showed that fibromyalgia subjects (FMS) had elevated levels of antibodies against SGC (termed anti-SGC IgG) compared to healthy controls and that anti-SGC IgG were associated with a more severe disease status. The overarching aim of the current study was to determine whether the role of anti-SGC IgG in driving pain is exclusively through peripheral mechanisms, as indirectly shown so far, or could be attributed also to central mechanisms. To this end, we wanted to first confirm, in a larger cohort of FMS, the relation between anti-SGC IgG and pain-related clinical measures. Secondly, we explored the associations of these autoantibodies with brain metabolite concentrations (assessed via magnetic resonance spectroscopy, MRS) and pressure-evoked cerebral pain processing (assessed via functional magnetic resonance imaging, fMRI) in FMS. Proton MRS was performed in the thalamus and rostral anterior cingulate cortex (rACC) of FMS and concentrations of a wide spectrum of metabolites were assessed. During fMRI, FMS received individually calibrated painful pressure stimuli corresponding to low and high pain intensities. Our results confirmed a positive correlation between anti-SGC IgG and clinical measures assessing condition severity. Additionally, FMS with high anti-SGC IgG levels had higher pain intensity and a worse disease status than FMS with low anti-SGC IgG levels. Further, anti-SGC IgG levels negatively correlated with metabolites such as scyllo-inositol in thalamus and rACC as well as with total choline and macromolecule 12 in thalamus, thus linking anti-SGC IgG levels to the concentration of metabolites in the brain of FMS. However, anti-SGC IgG levels in FMS were not associated with the sensitivity to pressure pain or the cerebral processing of evoked pressure pain. Taken together, our results suggest that anti-SGC IgG might be clinically relevant for spontaneous, non-evoked pain. Our current and previous translational and clinical findings could provide a rationale to try new antibody-related treatments in FMS.

2.
J Pain ; 24(9): 1731-1743, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37354157

RESUMEN

The ability to accurately predict pain is an adaptive feature in healthy individuals. However, in chronic pain, this mechanism may be selectively impaired and can lead to increased anxiety and excessive avoidance behavior. Recently, we reported the first data demonstrating brain activation in fibromyalgia (FM) patients during conditioned pain responses, in which FM patients revealed a tendency to form new pain-related associations rather than extinguishing irrelevant ones. The aim of the present study was to extend our previous analysis, to elucidate potential neural divergences between subjects with FM (n = 65) and healthy controls (HCs) (n = 33) during anticipatory information (ie, prior to painful stimulus onset). Using functional magnetic resonance imaging (fMRI), the current analyses include 1) a congruently cued paradigm of low and high pain predictive cues, followed by 2) an incongruently cued paradigm where low and high pain predictive cues were followed by an identical mid-intensity painful pressure. During incongruently cued high-pain associations, FM exhibited reduced left dorsolateral prefrontal cortex (dlPFC) activation compared to HCs, which was followed by an altered subsequent pain experience in FM, as patients continued to rate the following painful stimuli as high, even though the pressure had been lowered. During congruently cued low pain anticipation, FM exhibited decreased right dlPFC activation compared to HCs, as well as decreased brain connectivity between brain regions implicated in cognitive modulation of pain (dlPFC) and nociceptive processing (primary somatosensory cortex/postcentral gyrus [S1] and supplementary motor area [SMA]/midcingulate cortex [MCC]). These results may reflect an important feature of validating low pain expectations in HCs and help elucidate behavioral reports of impaired safety processing in FM patients. PERSPECTIVE: FM exhibited a stronger conditioned pain response for high-pain associations, which was associated with reduced dlPFC activation during the incongruent trial. During (congruent and incongruent) low pain associations, FM dlPFC brain activation remained indifferent. Imbalances in threat and safety pain perception may be an important target for psychotherapeutic interventions.


Asunto(s)
Dolor Crónico , Fibromialgia , Humanos , Fibromialgia/complicaciones , Fibromialgia/diagnóstico por imagen , Corteza Prefontal Dorsolateral , Percepción del Dolor/fisiología , Encéfalo , Imagen por Resonancia Magnética/métodos , Corteza Prefrontal/patología
3.
Front Neurosci ; 16: 942136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017179

RESUMEN

Functional brain networks and the perception of pain can fluctuate over time. However, how the time-dependent reconfiguration of functional brain networks contributes to chronic pain remains largely unexplained. Here, we explored time-varying changes in brain network integration and segregation during pain over a disease-affected area (joint) compared to a neutral site (thumbnail) in 28 patients with rheumatoid arthritis (RA) in comparison with 22 healthy controls (HC). During functional magnetic resonance imaging, all subjects received individually calibrated pain pressures corresponding to visual analog scale 50 mm at joint and thumbnail. We implemented a novel approach to track changes of task-based network connectivity over time. Within this framework, we quantified measures of integration (participation coefficient, PC) and segregation (within-module degree z-score). Using these network measures at multiple spatial scales, both at the level of single nodes (brain regions) and communities (clusters of nodes), we found that PC at the community level was generally higher in RA patients compared to HC during and after painful pressure over the inflamed joint and corresponding site in HC. This shows that all brain communities integrate more in RA patients than in HC for time points following painful stimulation to a disease-relevant body site. However, the elevated community-related integration seen in patients appeared to not pertain uniquely to painful stimulation at the inflamed joint, but also at the neutral thumbnail, as integration and segregation at the community level did not differ across body sites in patients. Moreover, there was no specific nodal contribution to brain network integration or segregation. Altogether, our findings indicate widespread and persistent changes in network interaction in RA patients compared to HC in response to painful stimulation.

4.
Pain ; 163(3): 538-547, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34224497

RESUMEN

ABSTRACT: The current study used functional magnetic resonance imaging to directly compare disease-relevant cerebral pain processing in well-characterized patient cohorts of fibromyalgia (FM, nociplastic pain) and rheumatoid arthritis (RA, nociceptive pain). Secondary aims were to identify pain-related cerebral alterations related to the severity of clinical symptoms such as pain intensity, depression, and anxiety. Twenty-six patients with FM (without RA-comorbidity) and 31 patients with RA (without FM-comorbidity) underwent functional magnetic resonance imaging while stimulated with subjectively calibrated painful pressures corresponding to a pain sensation of 50 mm on a 100-mm visual analogue scale. Stimulation sites were at the most inflamed proximal interphalangeal joint in the left hand in patients with RA and the left thumbnail in patients with FM, 2 sites that have previously been shown to yield the same brain activation in healthy controls. The current results revealed disease-distinct differences during pain modulation in RA and FM. Specifically, in response to painful stimulation, patients with FM compared to patients with RA exhibited increased brain activation in bilateral inferior parietal lobe (IPL), left inferior frontal gyrus (IFG)/ventrolateral prefrontal cortex (vlPFC) encapsulating left dorsolateral prefrontal cortex, and right IFG/vlPFC. However, patients with RA compared to patients with FM exhibited increased functional connectivity (during painful stimulation) between right and left IPL and sensorimotor network and between left IPL and frontoparietal network. Within the FM group only, anxiety scores positively correlated with pain-related brain activation in left dorsolateral prefrontal cortex and right IFG/vlPFC, which further highlights the complex interaction between affective (ie, anxiety scores) and sensory (ie, cerebral pain processing) dimensions in this patient group.


Asunto(s)
Artritis Reumatoide , Fibromialgia , Artritis Reumatoide/complicaciones , Artritis Reumatoide/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Fibromialgia/complicaciones , Fibromialgia/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Dolor/complicaciones , Dolor/etiología
5.
Pain ; 163(2): 274-286, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34142769

RESUMEN

ABSTRACT: A cerebral upregulation of the translocator protein (TSPO), a biomarker of glial activation, has been reported in fibromyalgia subjects (FMS). The TSPO binding affinity is genetically regulated by the Ala147Thr polymorphism in the TSPO gene (rs6971) and allows for a subject classification into high affinity binders (HABs) and mixed/low affinity binders (MLABs). The aim of the present multimodal neuroimaging study was to examine the associations of the TSPO polymorphism with: (1) conditioned pain modulation, (2) expectancy-modulated pain processing assessed during functional magnetic resonance imaging, and (3) the concentration and balance of glutamate and γ-aminobutyric acid in the rostral anterior cingulate cortex and thalamus using proton magnetic resonance spectroscopy in FMS (n = 83) and healthy controls (n = 43). The influence of TSPO on endogenous pain modulation presented in the form of TSPO HABs, as opposed to MLABs, displaying less efficient descending pain inhibition and expectancy-induced reduction of pain. Translocator protein HABs in both groups (FM and healthy controls) were found to have higher thalamic glutamate concentrations and exhibit a pattern of positive correlations between glutamate and γ-aminobutyric acid in the rostral anterior cingulate cortex, not seen in MLABs. Altogether, our findings point to TSPO-related mechanisms being HAB-dependent, brain region-specific, and non-FM-specific, although in FMS the disadvantage of an aberrant pain regulation combined with an HAB genetic set-up might hamper pain modulation more strongly. Our results provide evidence for an important role of TSPO in pain regulation and brain metabolism, thereby supporting the ongoing drug development targeting TSPO-associated mechanisms for pain relief.


Asunto(s)
Fibromialgia , Receptores de GABA , Encéfalo , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Voluntarios Sanos , Humanos , Neuroimagen , Dolor/diagnóstico por imagen , Dolor/genética , Dolor/metabolismo , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/genética , Receptores de GABA/metabolismo , Ácido gamma-Aminobutírico/metabolismo
6.
Front Neurol ; 12: 755749, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777226

RESUMEN

Voxel-based morphometry (VBM) is a widely used tool for studying structural patterns of brain plasticity, brain development and disease. The source of the T1-signal changes is not understood. Most of these changes are discussed to represent loss or possibly gain of brain gray matter and recent publications speculate also about non-structural changes affecting T1-signal. We investigated the potential of pain stimulation to ultra-short-term alter gray matter signal changes in pain relevant brain regions in healthy volunteers using a longitudinal design. Immediately following regional nociceptive input, we detected significant gray matter volume (GMV) changes in central pain processing areas, i.e. anterior cingulate and insula cortex. However, similar results were observed in a control group using the identical time intervals but without nociceptive painful input. These GMV changes could be reproduced in almost 100 scanning sessions enrolling 72 healthy individuals comprising repetitive magnetization-prepared rapid gradient-echo (MPRAGE) sequences. These data suggest that short-term longitudinal repetitive MPRAGE may produce significant GMV changes without any intervention. Future studies investigating brain plasticity should focus and specifically report a consistent timing at which time-point during the experiment the T1-weighted scan is conducted. There is a necessity of a control group for longitudinal imaging studies.

8.
Front Neurosci ; 15: 674719, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34290579

RESUMEN

G-ratio weighted imaging is a non-invasive, in-vivo MRI-based technique that aims at estimating an aggregated measure of relative myelination of axons across the entire brain white matter. The MR g-ratio and its constituents (axonal and myelin volume fraction) are more specific to the tissue microstructure than conventional MRI metrics targeting either the myelin or axonal compartment. To calculate the MR g-ratio, an MRI-based myelin-mapping technique is combined with an axon-sensitive MR technique (such as diffusion MRI). Correction for radio-frequency transmit (B1+) field inhomogeneities is crucial for myelin mapping techniques such as magnetization transfer saturation. Here we assessed the effect of B1+ correction on g-ratio weighted imaging. To this end, the B1+ field was measured and the B1+ corrected MR g-ratio was used as the reference in a Bland-Altman analysis. We found a substantial bias (≈-89%) and error (≈37%) relative to the dynamic range of g-ratio values in the white matter if the B1+ correction was not applied. Moreover, we tested the efficiency of a data-driven B1+ correction approach that was applied retrospectively without additional reference measurements. We found that it reduced the bias and error in the MR g-ratio by a factor of three. The data-driven correction is readily available in the open-source hMRI toolbox (www.hmri.info) which is embedded in the statistical parameter mapping (SPM) framework.

9.
Mol Brain ; 14(1): 81, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980291

RESUMEN

The neurotransmitter serotonin, involved in the regulation of pain and emotion, is critically regulated by the 5-HT1A autoreceptor and the serotonin transporter (5-HTT). Polymorphisms of these genes affect mood and endogenous pain modulation, both demonstrated to be altered in fibromyalgia subjects (FMS). Here, we tested the effects of genetic variants of the 5-HT1A receptor (CC/G-carriers) and 5-HTT (high/intermediate/low expression) on mood, pain sensitivity, cerebral processing of evoked pain (functional MRI) and concentrations of GABA and glutamate (MR spectroscopy) in rostral anterior cingulate cortex (rACC) and thalamus in FMS and healthy controls (HC). Interactions between serotonin-relevant genes were found in affective characteristics, with genetically inferred high serotonergic signalling (5-HT1A CC/5-HTThigh genotypes) being more favourable across groups. Additionally, 5-HT1A CC homozygotes displayed higher pain thresholds than G-carriers in HC but not in FMS. Cerebral processing of evoked pressure pain differed between groups in thalamus with HC showing more deactivation than FMS, but was not influenced by serotonin-relevant genotypes. In thalamus, we observed a 5-HT1A-by-5-HTT and group-by-5-HTT interaction in GABA concentrations, with the 5-HTT high expressing genotype differing between groups and 5-HT1A genotypes. No significant effects were seen for glutamate or in rACC. To our knowledge, this is the first report of this serotonergic gene-to-gene interaction associated with mood, both among FMS (depression) and across groups (anxiety). Additionally, our findings provide evidence of an association between the serotonergic system and thalamic GABA concentrations, with individuals possessing genetically inferred high serotonergic signalling exhibiting the highest GABA concentrations, possibly enhancing GABAergic inhibitory effects via 5-HT.


Asunto(s)
Afecto/fisiología , Epistasis Genética , Fibromialgia/genética , Dolor/genética , Serotonina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Análisis de Varianza , Ansiedad/complicaciones , Ansiedad/genética , Ansiedad/fisiopatología , Estudios de Casos y Controles , Fibromialgia/diagnóstico por imagen , Fibromialgia/fisiopatología , Fibromialgia/psicología , Ácido Glutámico/metabolismo , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Oxígeno/sangre , Dolor/complicaciones , Dolor/diagnóstico por imagen , Dolor/fisiopatología , Umbral del Dolor , Tálamo/metabolismo
10.
Eur J Pain ; 25(2): 398-414, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064887

RESUMEN

BACKGROUND: Dysregulation of the µ-opioid receptor has been reported in fibromyalgia (FM) and was linked to pain severity. Here, we investigated the effect of the functional genetic polymorphism of the µ-opioid receptor gene (OPRM1) (rs1799971) on symptom severity, pain sensitivity and cerebral pain processing in FM subjects and healthy controls (HC). METHODS: Symptom severity and pressure pain sensitivity was assessed in FM subjects (n = 70) and HC (n = 35). Cerebral pain-related activation was assessed by functional magnetic resonance imaging during individually calibrated painful pressure stimuli. RESULTS: Fibromyalgia subjects were more pain sensitive but no significant differences in pain sensitivity or pain ratings were observed between OPRM1 genotypes. A significant difference was found in cerebral pain processing, with carriers of at least one G-allele showing increased activation in posterior cingulate cortex (PCC) extending to precentral gyrus, compared to AA homozygotes. This effect was significant in FM subjects but not in healthy participants, however, between-group comparisons did not yield significant results. Seed-based functional connectivity analysis was performed with the seed based on differences in PCC/precentral gyrus activation between OPRM1 genotypes during evoked pain across groups. G-allele carriers displayed decreased functional connectivity between PCC/precentral gyrus and prefrontal cortex. CONCLUSIONS: G-allele carriers showed increased activation in PCC/precentral gyrus but decreased functional connectivity with the frontal control network during pressure stimulation, suggesting different pain modulatory processes between OPRM1 genotypes involving altered fronto-parietal network involvement. Furthermore, our results suggest that the overall effects of the OPRM1 G-allele may be driven by FM subjects. SIGNIFICANCE: We show that the functional polymorphism of the µ-opioid receptor gene OPRM1 was associated with alterations in the fronto-parietal network as well as with increased activation of posterior cingulum during evoked pain in FM. Thus, the OPRM1 polymorphism affects cerebral processing in brain regions implicated in salience, attention, and the default mode network. This finding is discussed in the light of pain and the opioid system, providing further evidence for a functional role of OPRM1 in cerebral pain processing.


Asunto(s)
Fibromialgia , Fibromialgia/diagnóstico por imagen , Fibromialgia/genética , Humanos , Imagen por Resonancia Magnética , Dolor/diagnóstico por imagen , Dolor/genética , Umbral del Dolor , Polimorfismo Genético/genética , Receptores Opioides mu/genética
11.
Pain ; 161(9): 2079-2088, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32379218

RESUMEN

ABSTRACT: Behavioral studies have demonstrated aberrant safety processing in fibromyalgia subjects (FMSs) and suggested that patients accumulate new potential pain-related threats more effectively than extinguishing no longer relevant ones. The aim of the current study was to investigate the neural correlates of conditioned pain responses and their relationship with emotional distress in FMS (n = 67) and healthy controls (HCs, n = 34). Using functional magnetic resonance imaging, we traced conditioned pain responses to an identical moderately painful pressure (P30) depending on whether it was following a green (P30green) or a red (P30red) cue. The cues were previously associated with individually calibrated painful pressure stimuli of low and high intensity, corresponding to visual analogue scale 10 and 50 mm, respectively. Fibromyalgia subjects displayed increased P30green ratings over time, while P30red ratings remained elevated. Healthy controls adapted all pain ratings to resemble moderate pain. Fibromyalgia subjects exhibited increased activation for [P30green>P30red] in M1/anterior insula, whereas HC showed increased S2/mid-insula response to [P30red>P30green]. High pain catastrophizing scale (PCS) ratings in fibromyalgia (FM) covaried with heightened brain activation for [P30green] × PCS in left dorsolateral prefrontal cortex and medial prefrontal cortex/orbitofrontal cortex; and [P30green>P30red] × PCS in dorsal anterior cingulate cortex/mid-cingulate cortex; superior temporal pole, extending to anterior insula; bilateral thalamus; and posterior insula. Psychophysiological interaction analysis for FM [P30green>P30red] × PCS revealed a dissociation in functional connectivity between thalamus and bilateral inferior parietal lobe. In alignment with behavioral data, FMS displayed a cerebral response suggesting preferential formation of new pain-related associations while simultaneously maintaining no longer relevant ones. The opposite was observed in HC. Increased responses to pain-related threats in FM may contribute to dysfunctional pain-protective behaviors and disability.


Asunto(s)
Fibromialgia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Fibromialgia/complicaciones , Humanos , Imagen por Resonancia Magnética , Dolor/etiología
12.
Hum Brain Mapp ; 39(1): 24-41, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091341

RESUMEN

A recent method, denoted in vivo g-ratio-weighted imaging, has related the microscopic g-ratio, only accessible by ex vivo histology, to noninvasive MRI markers for the fiber volume fraction (FVF) and myelin volume fraction (MVF). Different MRI markers have been proposed for g-ratio weighted imaging, leaving open the question which combination of imaging markers is optimal. To address this question, the repeatability and comparability of four g-ratio methods based on different combinations of, respectively, two imaging markers for FVF (tract-fiber density, TFD, and neurite orientation dispersion and density imaging, NODDI) and two imaging markers for MVF (magnetization transfer saturation rate, MT, and, from proton density maps, macromolecular tissue volume, MTV) were tested in a scan-rescan experiment in two groups. Moreover, it was tested how the repeatability and comparability were affected by two key processing steps, namely the masking of unreliable voxels (e.g., due to partial volume effects) at the group level and the calibration value used to link MRI markers to MVF (and FVF). Our data showed that repeatability and comparability depend largely on the marker for the FVF (NODDI outperformed TFD), and that they were improved by masking. Overall, the g-ratio method based on NODDI and MT showed the highest repeatability (90%) and lowest variability between groups (3.5%). Finally, our results indicate that the calibration procedure is crucial, for example, calibration to a lower g-ratio value (g = 0.6) than the commonly used one (g = 0.7) can change not only repeatability and comparability but also the reported dependency on the FVF imaging marker. Hum Brain Mapp 39:24-41, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Calibración , Femenino , Humanos , Masculino , Tractos Piramidales/diagnóstico por imagen , Reproducibilidad de los Resultados , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
13.
Front Neurosci ; 11: 720, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29326546

RESUMEN

The NODDI-DTI signal model is a modification of the NODDI signal model that formally allows interpretation of standard single-shell DTI data in terms of biophysical parameters in healthy human white matter (WM). The NODDI-DTI signal model contains no CSF compartment, restricting application to voxels without CSF partial-volume contamination. This modification allowed derivation of analytical relations between parameters representing axon density and dispersion, and DTI invariants (MD and FA) from the NODDI-DTI signal model. These relations formally allow extraction of biophysical parameters from DTI data. NODDI-DTI parameters were estimated by applying the proposed analytical relations to DTI parameters estimated from the first shell of data, and compared to parameters estimated by fitting the NODDI-DTI model to both shells of data (reference dataset) in the WM of 14 in vivo diffusion datasets recorded with two different protocols, and in simulated data. The first two datasets were also fit to the NODDI-DTI model using only the first shell (as for DTI) of data. NODDI-DTI parameters estimated from DTI, and NODDI-DTI parameters estimated by fitting the model to the first shell of data gave similar errors compared to two-shell NODDI-DTI estimates. The simulations showed the NODDI-DTI method to be more noise-robust than the two-shell fitting procedure. The NODDI-DTI method gave unphysical parameter estimates in a small percentage of voxels, reflecting voxelwise DTI estimation error or NODDI-DTI model invalidity. In the course of evaluating the NODDI-DTI model, it was found that diffusional kurtosis strongly biased DTI-based MD values, and so, making assumptions based on healthy WM, a novel heuristic correction requiring only DTI data was derived and used to mitigate this bias. Since validations were only performed on healthy WM, application to grey matter or pathological WM would require further validation. Our results demonstrate NODDI-DTI to be a promising model and technique to interpret restricted datasets acquired for DTI analysis in healthy white matter with greater biophysical specificity, though its limitations must be borne in mind.

14.
Pain ; 156(11): 2222-2233, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26181304

RESUMEN

In the past, nocebo manipulations have been found to modulate pain perception and influence long-term habituation to pain. Recently, neural correlates accompanying this finding have been identified: habituation over days is mirrored by decreased activity in pain-processing brain areas, whereas nocebo-specific modulation specifically involves the opercular cortex. Focusing on duration and central network characteristics of nocebo information in a longitudinal heat pain paradigm, we investigated 40 healthy participants over a period of 21 consecutive days, whereof sessions on days 1, 8, 14, and 21 were performed during functional magnetic resonance imaging scanning. Negative context information was given to half of the participants, inducing a nocebo manipulation through verbal suggestions. The analysis was focused on brain areas associated with habituation and nocebo effects and identified coupled brain regions using functional connectivity analysis. Decreased pain perception over days was reflected in reduced blood oxygenation level dependent signal in pain-processing areas, such as the insula and somatosensory cortices, whereas increased rostral anterior cingulate cortex activation reflected the central correlate for habituation over time. Habituation was significantly less pronounced in the nocebo group. Consistent with previous results, the nocebo manipulation not only modulated pain perception but also was accompanied by the activation of the operculum over an extended period of time. Importantly, the operculum exhibited changes in coupling during nociceptive input over time, as demonstrated by decreased connectivity with the basal ganglia and pinpoints differences, depending on whether a nocebo context was given. These data suggest that negative verbal suggestions prognosticating increasing pain may prevail by modulating basal ganglia-thalamocortical loops.


Asunto(s)
Habituación Psicofisiológica , Calor/efectos adversos , Efecto Nocebo , Dolor , Lóbulo Temporal/fisiopatología , Adulto , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Dolor/patología , Dolor/fisiopatología , Dolor/psicología , Dimensión del Dolor , Umbral del Dolor/fisiología , Psicofísica , Lóbulo Temporal/irrigación sanguínea , Factores de Tiempo , Adulto Joven
15.
Brain Imaging Behav ; 9(4): 848-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25527478

RESUMEN

Functional magnetic resonance imaging (MRI) has been widely used in neuroscientific studies to investigate neural correlates of perception and higher cognitive functions. Early on, the MR-scanning procedure itself has been identified to create discomfort and anxiety in some individuals, which may influence task performance and perception. The present study analyzed behavioral differences in pain intensity ratings obtained in two distinct situations: MR environment and laboratory setting. Within our longitudinal study design twenty healthy volunteers were exposed daily to an identical paradigm consisting of 60 repeated noxious heat stimuli (46 °C) on 21 consecutive days. After each block of ten stimuli, participants were prompted to rate pain intensity on a visual analog scale (VAS). On days 1, 8, 14, and 21 ratings scores were obtained during a functional imaging scan, whereas on the remaining days the sessions were conducted in a laboratory. It has come to our attention that pain intensity ratings acquired in MR environment were significantly higher than behavioral data collected in the lab setting. Given that the stimuli were standardized and no task or distraction confounded the ratings, it is likely that the attentional focus on noxious stimulation was identical in both conditions. It seems that the highly artificial scanner environment as such is sufficient to increase awareness/alertness. Given that salience rather than pure nociceptive input has been suggested to explain functional imaging results in painful conditions, these findings highlight concerns regarding the comparability of behavioral data assembled across inconsistent settings.


Asunto(s)
Imagen por Resonancia Magnética/efectos adversos , Dolor Nociceptivo/psicología , Percepción del Dolor , Adulto , Ansiedad , Nivel de Alerta , Femenino , Calor/efectos adversos , Humanos , Estudios Longitudinales , Masculino , Dimensión del Dolor , Adulto Joven
16.
Curr Opin Neurol ; 26(4): 353-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23757264

RESUMEN

PURPOSE OF REVIEW: The objective of this review is to give an overview of recent advances regarding structural changes and altered neural connectivity associated with chronic headache syndromes, focusing on migraine. RECENT FINDINGS: In conjunction with a recent boost of studies investigating exercise dependent neuroplasticity and reorganization of the brain, a number of new findings concerning structural abnormalities in migraine patients have been produced. MRI studies have explored structural changes not only across cohorts (e.g. headache patients and controls) but also longitudinally over time, making use of a variety of tools, such as voxel-based morphometry, cortical thickness analysis and, very recently, connectivity analysis. As certain abnormalities have repeatedly been found in migraineurs, the relation between structural deficits and functional impairment is increasingly a matter of debate. SUMMARY: Owing to novel neuroimaging approaches and evaluation methods, a range of possibilities for exploring brain differences between migraine patients and healthy subjects have become available. These include both regional structural alterations and network connectivity changes. Despite methodological advances, most studies involve still small populations and results are often inconclusive. Future work should clearly involve larger cohorts and combine different techniques to help us better understand the diagnostic implications.


Asunto(s)
Mapeo Encefálico , Encéfalo/patología , Cefalea/patología , Vías Nerviosas/patología , Cefalea/clasificación , Humanos , Procesamiento de Imagen Asistido por Computador , Leucoencefalopatías/complicaciones , Imagen por Resonancia Magnética , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA