Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Open ; 13(9)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39133170

RESUMEN

The cephalopod eye lens is unique because it has evolved as a compound structure with two physiologically distinct segments. However, the detailed ultrastructure of this lens and precise optical role of each segment are far from clear. To help elucidate structure-function relationships in the cephalopod lens, we conducted multiple structural investigations on squid. Synchrotron x-ray scattering and transmission electron microscopy disclose that an extensive network of structural features that resemble cell membrane complexes form a substantial component of both anterior and posterior lens segments. Optically, the segments are distinct, however, and Talbot interferometry indicates that the posterior segment possesses a noticeably higher refractive index gradient. We propose that the hitherto unrecognised network of membrane structures in the cephalopod lens has evolved to act as an essential conduit for the internal passage of ions and other metabolic agents through what is otherwise a highly dense structure owing to a very high protein concentration.


Asunto(s)
Cefalópodos , Cristalino , Animales , Cristalino/ultraestructura , Cristalino/fisiología , Cefalópodos/fisiología , Difracción de Rayos X , Membrana Celular/ultraestructura , Membrana Celular/metabolismo , Microscopía Electrónica de Transmisión , Decapodiformes/fisiología
2.
Invest Ophthalmol Vis Sci ; 48(6): 2695-700, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17525201

RESUMEN

PURPOSE: Alpha-crystallin, a ubiquitous molecular chaperone, is found in high concentrations in the lens. Its structure and precise mechanism of action, however, are unknown. The purpose of these experiments was to further the understanding of the chaperone function of alpha-crystallin. METHODS: X-ray- and neutron-solution-scattering studies were used to measure the radius of gyration of bovine lens alpha-crystallin when complexed with its target protein beta-crystallin in both normal and heavy-water-based solutions. Spectrophotometry was used as a chaperone assay. RESULTS: The radius of gyration of alpha-crystallin on its own and when mixed with beta-crystallin was 69 +/- 1 A at 35 degrees C and increased with the temperature. In contrast to H2O-buffered solutions, the radius of gyration did not increase significantly in D2O-buffered solutions up to 55 degrees C, and at 70 degrees C was, on average, some 15 to 20 A smaller. CONCLUSIONS: Bovine lens alpha-crystallin in solution can be modeled as a fenestrated spherical shell of diameter 169 A. At physiological temperatures, a weak interaction between alpha- and beta-crystallin occurs, and beta-crystallin is located in the fenestrations. Deuterium substitution indicates that the superaggregation process is controlled by hydrogen bonding. However, the chaperone process and superaggregation appear not to be linked.


Asunto(s)
Chaperonas Moleculares/química , Difracción de Neutrones/métodos , Difracción de Rayos X/métodos , alfa-Cristalinas/química , Animales , Bovinos , Unión Proteica , Dispersión del Ángulo Pequeño , beta-Cristalinas/química
3.
J Physiol ; 543(Pt 2): 633-42, 2002 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12205195

RESUMEN

De-epithelialised and de-endothelialised bovine corneal stromas with a hydration of 3.2 equilibrated at 154 mM NaCl and buffered at pH 7.4 had their optical density (400-750 nm) measured. Stromas equilibrated against 10, 20, 30, 50 or 100 mM NaCl made isotonic to 154 mM NaCl by supplementing with sorbitol were progressively more transparent as NaCl increased. Hypertonic equilibration against 300, 600 or 1000 mM NaCl resulted in a progressive loss of transparency compared with 154 mM NaCl. Light scattering as a function of wavelength fitted a lambda(-3) function well for 10, 30, 50, 100 and 154 mM NaCl preparations between 450 and 650 nm, but not at higher wavelengths. However, hypertonic 300, 600 and 1000 mM NaCl preparations showed a lambda(-2) dependence in the 450-750 nm range. Experiments with 154 mM NaCl and either 0 or 300 mM sorbitol suggested that the changes in light scattering in hypertonic preparations are unlikely to be caused by osmotic alterations to the stromal keratocytes. Psychophysical studies of the optical transmission function of preparations indicated that corneal stromas dialysed against 154 mM NaCl had usable optical properties, but preparations dialysed against 10 mM NaCl were effectively unable to transmit an image. The results are related to the known increase of fixed negative charge in the corneal matrix when chloride ions are adsorbed onto the matrix. It is suggested that the ordering force between corneal collagen fibrils, generated in part by anion binding, may be crucial to the physiological functioning of the visual system.


Asunto(s)
Sustancia Propia/fisiología , Luz , Agua/fisiología , Animales , Aniones/metabolismo , Bovinos , Sustancia Propia/efectos de los fármacos , Soluciones Isotónicas/farmacología , Óptica y Fotónica , Presión Osmótica , Solución Salina Hipertónica/farmacología , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...