Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmacol Rep ; 76(1): 98-111, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38214881

RESUMEN

BACKGROUND: Obstructive nephropathy is a condition often caused by urinary tract obstruction either anatomical (e.g., tumors), mechanical (e.g., urolithiasis), or compression (e.g., pregnancy) and can progress to chronic kidney disease (CKD). Studies have shown sexual dimorphism in CKD, where males were found to have a more rapid decline in kidney function following kidney injury compared to age-matched females. Protocatechuic acid (PCA), an anti-oxidant and anti-inflammatory polyphenolic compound, has demonstrated promising effects in mitigating drug-induced kidney injuries. The current study aims to explore sexual dimorphism in kidney injury after unilateral ureteral obstruction (UUO) and assess whether PCA treatment can mitigate kidney injury in both sexes. METHODS: UUO was induced in 10-12 weeks old male and female C57BL/6J mice. Mice were categorized into four groups (n = 6-8/group); Sham, Sham plus PCA (100 mg/kg, I.P daily), UUO, and UUO plus PCA. RESULTS: After 2 weeks of induction of UUO, markers of kidney oxidative stress (TBARs), inflammation (IL-1α and IL-6), tubular injury (neutrophil gelatinase-associated lipocalin, NGAL and urinary kidney injury molecule-1, KIM-1), fibrosis (Masson's trichrome staining, collagen IV expression, MMP-2 and MMP-9) and apoptosis (TUNEL+ cells, active caspase-1 and caspase-3) were significantly elevated in both males and females relative to their sham counterparts. Males exhibited significantly greater kidney oxidative stress, inflammation, fibrosis, and apoptosis after induction of UUO when compared to females. PCA treatment significantly attenuated UUO-induced kidney injury, inflammation, fibrosis, and apoptosis in both sexes. CONCLUSION: Our findings suggest a differential gender response to UUO-induced kidney injury with males being more sensitive to UUO-induced kidney inflammation, fibrosis, and apoptosis than age-matched females. Importantly, PCA treatment reduced UUO-induced kidney injury in a sex-independent manner which might be attributed to its anti-oxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties.


Asunto(s)
Hidroxibenzoatos , Enfermedades Renales , Insuficiencia Renal Crónica , Obstrucción Ureteral , Femenino , Ratones , Masculino , Animales , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Caracteres Sexuales , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Riñón , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/etiología , Enfermedades Renales/prevención & control , Insuficiencia Renal Crónica/metabolismo , Apoptosis , Inflamación/metabolismo , Fibrosis , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
2.
Physiol Rep ; 11(15): e15771, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37549936

RESUMEN

Nitric oxide (NO) contributes to blood pressure (BP) regulation via its vasodilatory and anti-inflammatory properties. We and others previously reported sex differences in BP in normotensive and hypertensive rat models where females have lower BP than age-matched males. As females are known to have greater NO bioavailability than age-matched males, the current study was designed to test the hypothesis that anesthetized female normotensive Wistar Kyoto rats (WKY) are more responsive to acute NOS inhibition-induced increases in BP compared to male WKY. Twelve-week-old male and female WKY were randomized to infusion of the nonspecific NOS inhibitor NG -nitro-L-arginine methyl ester (L-NAME, 1 mg/kg/min) or selective NOS1 inhibition with vinyl-L-NIO (VNIO, 0.5 mg/kg/min) for 60 min. Mean arterial BP, glomerular filtration rate (GFR), urine volume, and electrolyte excretion were assessed before, and during L-NAME or VNIO infusion. L-NAME and VNIO significantly increased BP in both sexes; however, the increase in BP with L-NAME infusion was greater in females versus males compared to baseline BP values. Acute infusion of neither L-NAME nor VNIO for 60 min altered GFR in either sex. However, urine volume, sodium, chloride and potassium excretion levels increased comparably in male and female WKY with L-NAME and VNIO infusion. Our findings suggest sex differences in BP responses to acute non-isoform-specific NOS inhibition in WKY, with females being more responsive to L-NAME-induced elevations in BP relative to male WKY. However, sex differences in the BP response did not coincide with sex differences in renal hemodynamic responses to acute NOS inhibition.


Asunto(s)
Hipertensión , Hipotensión , Animales , Femenino , Masculino , Ratas , Presión Sanguínea/fisiología , Inhibidores Enzimáticos/farmacología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/fisiología , Óxido Nítrico Sintasa , Ratas Endogámicas WKY
3.
Prostaglandins Other Lipid Mediat ; 161: 106650, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35618157

RESUMEN

Numerous studies have demonstrated a sexual dimorphism in blood pressure (BP) control in spontaneously hypertensive rats (SHR), however the mechanisms remain to be further elucidated. Based on the established role of arachidonic acid metabolites and heme oxygenase (HO) in BP control, we hypothesize that higher BP in male SHR is associated with differential expression in renal HO and arachidonic acid metabolizing enzymes vs. female SHR. Higher BP in male SHR coincided with significant increases in renal cortical superoxide production and thiobarbituric acid reactive substances (TBARs) levels as measures of oxidative stress compared to normotensive female WKY and female SHR. The elevations in BP and oxidative stress in male SHR were also associated with a decrease in cortical heme oxygenase-1 (HO-1) expression when compared to normotensive female WKY. Although there was no sex or strain differences in cortical expression of the epoxyeicosatrienoic acids (EETs) producing enzyme, cytochrome P450 epoxygenase (CYP2C23), in male and female SHR and WKY, SHR had greater expression of the EETs metabolizing enzyme, soluble epoxide hydrolase (sEH) vs. WKY. Cortical expression of the 20-hydroxyeicosatetraenoic acid (20-HETE) producing enzyme, cytochrome P450 hydroxylase (CYP4A), was less in female WKY and SHR compared to strain-matched males and cortical 20-HETE levels were also less in female SHR vs. male SHR. Cortical cyclooxygenase-2 (COX-2) expression was significantly greater in female SHR and WKY vs. males and cortical prostaglandin E2 (PGE2) levels in female SHR was significantly greater than male WKY. In conclusion, our data suggest that sex differences in renal oxidative stress, HO-1 and arachidonic acid metabolizing enzymes could contribute to sexual dimorphism in hypertension in young SHR.


Asunto(s)
Hipertensión , Caracteres Sexuales , Animales , Ácido Araquidónico/metabolismo , Presión Sanguínea , Sistema Enzimático del Citocromo P-450/metabolismo , Eicosanoides/metabolismo , Femenino , Hemo-Oxigenasa 1/metabolismo , Hipertensión/metabolismo , Riñón/metabolismo , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
5.
Clin Sci (Lond) ; 135(15): 1791-1804, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34338771

RESUMEN

Although numerous clinical and experimental studies have clearly identified a sexual dimorphism in blood pressure control, the mechanism(s) underlying gender differences in blood pressure remain unclear. Over the past two decades, numerous laboratories have utilized the spontaneously hypertensive rats (SHR) as an experimental model of essential hypertension to increase our understanding of the mechanisms regulating blood pressure in males and females. Previous work by our group and others have implicated that differential regulation of adrenergic receptors, the renin-angiotensin system, oxidative stress, nitric oxide bioavailability and immune cells contribute to sex differences in blood pressure control in SHR. The purpose of this review is to summarize previous findings to date regarding the mechanisms of blood pressure control in male versus female SHR.


Asunto(s)
Presión Sanguínea , Hipertensión Esencial/fisiopatología , Animales , Modelos Animales de Enfermedad , Hipertensión Esencial/inmunología , Hipertensión Esencial/metabolismo , Femenino , Hormonas Esteroides Gonadales/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Estrés Oxidativo , Ratas Endogámicas SHR , Sistema Renina-Angiotensina , Caracteres Sexuales , Factores Sexuales , Especificidad de la Especie , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología
6.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008770

RESUMEN

Glomerular endothelial injury and effectiveness of glomerular endothelial repair play a crucial role in the progression of glomerulonephritis. Although the potent immune suppressive everolimus is increasingly used in renal transplant patients, adverse effects of its chronic use have been reported clinically in human glomerulonephritis and experimental renal disease. Recent studies suggest that progenitor stem cells could enhance glomerular endothelial repair with minimal adverse effects. Increasing evidence supports the notion that stem cell therapy and regenerative medicine can be effectively used in pathological conditions within the predictive, preventive and personalized medicine (PPPM) paradigm. In this study, using an experimental model of glomerulonephritis, we tested whether bone marrow-derived stem cells (BMDSCs) could provide better effect over everolimus in attenuating glomerular injury and improving the repair process in a rat model of glomerulonephritis. Anti-Thy1 glomerulonephritis was induced in male Sprague Dawley rats by injection of an antibody against Thy1, which is mainly expressed on glomerular mesangial cells. Additional groups of rats were treated with the immunosuppressant everolimus daily after the injection of anti-Thy1 or injected with single bolus dose of BMDSCs after one week of injection of anti-Thy1 (n = 6-8). Nine days after injection of anti-Thy1, glomerular albumin permeability and albuminuria were significantly increased when compared to control group (p < 0.05). Compared to BMDSCs, everolimus was significantly effective in attenuating glomerular injury, nephrinuria and podocalyxin excretion levels as well as in reducing inflammatory responses and apoptosis. Our findings suggest that bolus injection of BMDSCs fails to improve glomerular injury whereas everolimus slows the progression of glomerular injury in Anti-Thy-1 induced glomerulonephritis. Thus, everolimus could be used at the early stage of glomerulonephritis, suggesting potential implications of PPPM in the treatment of progressive renal injury.


Asunto(s)
Células de la Médula Ósea/citología , Everolimus/farmacología , Glomérulos Renales/lesiones , Glomérulos Renales/patología , Trasplante de Células Madre , Células Madre/citología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Glomérulos Renales/efectos de los fármacos , Masculino , Proteínas de la Membrana/metabolismo , Necrosis , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
7.
PLoS One ; 15(12): e0243398, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33259556

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0134156.].

8.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726654

RESUMEN

Breast cancer is the current leading cause of cancer death in females worldwide. Although current chemotherapeutic drugs effectively reduce the progression of breast cancer, most of these drugs have many unwanted side effects. Salvianolic acid B (Sal-B) is a bioactive compound isolated from the root of Danshen Radix with potent antioxidant and anti-inflammatory properties. Since free radicals play a key role in the initiation and progression of tumor cells growth and enhance their metastatic potential, the current study was designed to investigate the antitumor activity of Sal-B and compare it with the antitumor activity of the traditional anticancer drug, cisplatin. In vitro, Sal-B decreased the human breast cancer adenocarcinoma (MCF-7) cells proliferation in a concentration and time dependent manner. In vivo and similar to cisplatin treatment, Sal-B significantly reduced tumor volume and increased the median survival when compared to tumor positive control mice group injected with Ehrlich solid carcinoma cell line (ESC). Sal-B decreased plasma level of malondialdehyde as a marker of oxidative stress and increased plasma level of reduced glutathione (GSH) as a marker of antioxidant defense when compared to control ESC injected mice. Either Sal-B or cisplatin treatment decreased tumor tissue levels of tumor necrosis factor (TNF-α), matrix metalloproteinase-8 (MMP-8), and Cyclin D1 in ESC treated mice. Contrary to cisplatin treatment, Sal-B did not decrease tumor tissue Ki-67 protein in ESC injected mice. Immunohistochemical analysis revealed that Sal-B or cisplatin treatment increased the expression of the apoptotic markers caspase-3 and P53. Although Sal-B or cisplatin significantly reduced the expression of the angiogenic factor vascular endothelial growth factor (VEGF) in ESC injected mice, only Sal-B reduced expression level of COX-2 in ESC injected mice. Our data suggest that Sal-B exhibits antitumor features against breast cancer cells possibly via enhancing apoptosis and reducing oxidative stress, inflammation, and angiogenesis.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama , Ácidos Cafeicos/farmacología , Carcinoma de Ehrlich , Lactatos/farmacología , Neovascularización Patológica , Estrés Oxidativo/efectos de los fármacos , Animales , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Carcinoma de Ehrlich/irrigación sanguínea , Carcinoma de Ehrlich/tratamiento farmacológico , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Células MCF-7 , Ratones , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(11): 1669-1680, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31349026

RESUMEN

Recent studies suggest a potential role of bioactive lipids in acute kidney injury induced by lipopolysaccharide (LPS). The current study was designed to determine the profiling activities of various polyunsaturated fatty acid (PUFA) metabolizing enzymes, including lipoxygenases (LO), cyclooxygenase, and cytochrome P450 in the plasma of LPS-injected mice using LC-MS. Heat map analysis revealed that out of 126 bioactive lipids screened, only the 12/15-LO metabolite, 12-HETE, had a significant (2.24 ±â€¯0.4) fold increase relative to control (P = 0.0001) after Bonferroni Correction (BCF α = 0.003). We then determined the role of the 12/15-LO in LPS-induced acute kidney injury using genetic and pharmacological approaches. Treatment of LPS injected mice with the 12/15-LO inhibitor, baicalein, significantly reduced levels of renal injury and inflammation markers including urinary thiobarbituric acid reactive substance (TBARs), urinary monocyte chemoattractant protein-1 (MCP-1), renal interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Similarly, knocking-out of 12/15-LO reduced levels of renal inflammation and injury markers elicited by LPS injection. Next, we tested whether exogenous supplementation with docosahexaenoic acid (DHA) as a substrate would divert the role of 12/15-LO from being pro-inflammatory to anti-inflammatory via increased production of the anti-inflammatory metabolite. DHA treatment restored the decreased in plasma level of resolvin D2 (RvD2) and reduced renal injury in LPS-injected mice whereas DHA treatment failed to provide any synergistic effects in reducing renal injury in LPS injected 12/15-LO knock-out mice. The ability of RvD2 to protect kidney against LPS-induced renal injury was further confirmed by exogenous RvD2 which significantly reduced the elevation in renal injury in LPS injected mice. These data suggest a double-edged sword role of 12/15-LO in LPS-induced acute renal inflammation and injury, depending on the type of substrate available for its activity.


Asunto(s)
Lesión Renal Aguda/inmunología , Araquidonato 12-Lipooxigenasa/inmunología , Araquidonato 15-Lipooxigenasa/inmunología , Inflamación/inmunología , Lipopolisacáridos/inmunología , Lesión Renal Aguda/patología , Animales , Inflamación/patología , Masculino , Ratones Endogámicos C57BL
10.
Artículo en Inglés | MEDLINE | ID: mdl-29425800

RESUMEN

We previously reported that female spontaneously hypertensive rats (SHR) have greater cyclooxygenase-2 (COX-2) expression in the renal medulla and enhanced urinary excretion of prostaglandin (PG) E2 (PGE2) metabolites compared to male SHR. Based on the role of COX-2-derived prostanoids in the regulation of cardiovascular health, the aim of the current study was to test the hypothesis that blood pressure (BP) in female SHR is more sensitive to COX-2 inhibition than in males. Seven week old male and female SHR were implanted with telemetry transmitters for continuous BP recording. After one week of baseline BP recording, male and female SHR were randomized to receive the selective COX-2 inhibitor celecoxib (10 mg/kg/day) or vehicle for six weeks (from 9 to 14 weeks of age). Female SHR had lower BP and albuminuria compared to male SHR as well as enhanced urinary excretion of PGE metabolite (PGEM), 6-keto PGF1α and thromboxane B2, indicators of PGE2, PGI2 and TXA2, respectively. Treatment with celecoxib did not significantly alter BP or albuminuria in either female or male SHR. Celecoxib did not change PGs metabolites excretion in male SHR; however, excretion levels of PGEM and 6-keto PGF1α were reduced in female SHR. COX-2 derived PG can also induce oxidative stress. Markers of oxidative stress (thiobarbituric acid reactive substances (TBARs) and H2O2 excretion) were lesser in female SHR versus male SHR. Celecoxib treatment did not significantly change markers of oxidative stress in female SHR, however, urinary TBARs excretion was significantly reduced in male SHR after 6 weeks of treatment with celecoxib. Therefore, although celecoxib treatment appears to have distinct effects on prostanoids levels in female SHR vs. males, it is unlikely that COX-2 contributes to established sex differences in BP in SHR.


Asunto(s)
Albuminuria/tratamiento farmacológico , Presión Sanguínea/efectos de los fármacos , Celecoxib/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Animales , Femenino , Hipertensión/tratamiento farmacológico , Masculino , Prostaglandinas/metabolismo , Ratas , Ratas Endogámicas SHR , Factores Sexuales
11.
Artículo en Inglés | MEDLINE | ID: mdl-27596333

RESUMEN

The pro-inflammatory cyclooxygenase (COX)-derived prostaglandins and the anti-inflammatory cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) play an important role in the regulation of renal injury. The current study examined whether COX inhibition augments the reno-protective effects of increased EETs levels via inhibiting EETs degradation by soluble epoxide hydrolase (sEH) in diabetic rats. Streptozotocin (50mg/kg, i.v) was used to induce diabetes in male Sprague Dawley rats. Rats were then divided into 5 groups (n=6-8); control non diabetic, diabetic, diabetic treated with the sEH inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), diabetic treated with the COX inhibitor meloxicam and diabetic treated with meloxicam plus t-AUCB for 2 months. Glomerular albumin permeability and urinary albumin and nephrin excretion levels were significantly elevated in diabetic rats together with decreased glomerular α3 integrin and nephrin expression levels. Inhibition of sEH reduced glomerular albumin permeability, albumin and nephrin excretion levels and restored the decrease in glomerular α3 integrin and nephrin expression in diabetic rats. Meloxicam failed to reduce renal injury or even to synergize the reno-protective effects of sEH inhibition in diabetic rats. Furthermore, inhibition of sEH reduced the elevation in renal collagen deposition and urinary MCP-1 excretion levels together with a reduction in the number of renal TUNEL positive cells in diabetic vs. control rats (P<0.05). Meloxicam did not reduce renal inflammation or apoptosis in diabetic rats or even exacerbate the anti-inflammatory and anti-apoptotic effects of sEH inhibition. Renal 20-hydroxyeicosatetranoic acid (20-HETE) levels were elevated in diabetic rats and meloxicam further exacerbated this elevation. In conclusion, our study suggests that inhibition of COX failed to provide renal protection or to augment the reno-protective effects of sEH inhibition in diabetic rats, at least in part, via increased inflammatory 20-HETE levels.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Riñón/efectos de los fármacos , Tiazinas/farmacología , Tiazoles/farmacología , Animales , Glucemia/metabolismo , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Citoprotección/efectos de los fármacos , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Sinergismo Farmacológico , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Meloxicam , Ratas , Ratas Sprague-Dawley , Solubilidad
12.
Heliyon ; 2(7): e00130, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27441301

RESUMEN

BACKGROUND/AIM: Hepatic injury is a hallmark adverse reaction to Valproate (VPA), a common used drug in the management of numerous CNS disorders, including epilepsy. DHA has a myriad of health benefits, including renal- and hepato-protective effects. Unfortunately, however, the underpinnings of such liver-pertinent VPA- and DHA-actions remain largely undefined. Accordingly, this study attempted to unveil the cellular and molecular triggers whereby VPA evokes, while DHA abates, hepatotoxicity. METHODS: We evaluated activity and/or expression of cellular markers of oxidative stress, inflammation, and apoptosis in rat liver, following treatment with VPA (500 mg/kg/day) with and without concurrent treatment with DHA (250 mg/kg/day) for two weeks. RESULTS AND CONCLUSION: VPA promoted hepatic oxidative stress as evidenced by enhancing activity/expression of NADPH-oxidase and its subunits, a ROS-generator, and by accumulation of lipid-peroxides. Moreover, VPA enhanced hepatic phosphorylation/activation of mitogen-activated protein kinase (MAPK), and expression of cyclooxygenase-2(COX-2), as proinflammatory signals. Besides, VPA promoted hepatocellular apoptosis, as attested by enhanced expression of cleaved caspase-9 and increased number of TUNEL-positive hepatocytes. Lastly, VPA upregulated levels of hypoxia-inducible factor-1-alpha (HIF-1α), a multifaceted modulator of hepatocytic biology, and activity of its downstream antioxidant enzyme heme-oxygenase-1(HO-1). These changes were significantly blunted by co-administration of DHA. Our findings demonstrate that VPA activated NADPH-oxidase and HIF-1α to induce oxidative-stress and hypoxia as initiators of hepatic injury. These changes were further aggravated by up-regulation of inflammatory (MAPK and COX-2) and apoptotic cascades, but could be partly lessened by HO-1 activation. Concurrent administration of DHA mitigated all VPA-induced anomalies.

13.
Physiol Rep ; 4(1)2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26755738

RESUMEN

We previously reported that male spontaneously hypertensive rats (SHRs) are more sensitive to chronic angiotensin (Ang) II-induced hypertension compared with female rats. This study was designed to test the hypothesis that anesthetized male SHRs are also more responsive to acute Ang II-induced increases in blood pressure and renal hemodynamic changes when compared with female SHRs. Baseline mean arterial pressure (MAP) was higher in male SHRs than in female SHRs (135 ± 2 vs. 124 ± 4 mmHg, P < 0.05). Acute intravenous infusion of Ang II (5 ng/kg/min) for 60 minutes significantly increased MAP to 148 ± 2 mmHg in male SHRs (P < 0.05) without a significant change in MAP in female SHRs. Baseline glomerular filtration rate (GFR) was also higher in male SHRs than in female SHRs (2.6 ± 0.3 vs. 1.3 ± 0.1 mL/min, P < 0.05). Ang II infusion for 60 min significantly decreased GFR in male SHRs (2.0 ± 0.2 mL/min; P < 0.05) without significant changes in urine flow rate, sodium, or chloride excretion. In contrast, Ang II infusion increased GFR in female SHRs (1.9 ± 0.2 mL/min; P < 0.05). The increase in GFR upon Ang II infusion in female SHRs was associated with increases in urine flow rate (4.3 ± 0.3 to 7.1 ± 0.9 µL/min), sodium excretion (0.16 ± 0.04 to 0.4 ± 0.1 µmol/min), and chloride excretion (0.7 ± 0.08 to 1.1 ± 0.1 µmol/min; for all P < 0.05). These findings support the hypothesis that there is sex difference in response to acute Ang II infusion in SHRs with females being less responsive to Ang II-induced elevations in blood pressure and decreases in GFR relative to male SHRs.


Asunto(s)
Angiotensina II/administración & dosificación , Presión Sanguínea/fisiología , Tasa de Filtración Glomerular/fisiología , Hemodinámica/fisiología , Caracteres Sexuales , Angiotensina II/toxicidad , Animales , Presión Sanguínea/efectos de los fármacos , Femenino , Tasa de Filtración Glomerular/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Infusiones Intravenosas , Masculino , Ratas , Ratas Endogámicas SHR
14.
PLoS One ; 10(7): e0134156, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26230491

RESUMEN

OBJECTIVES: Iron overload is now recognized as a health problem in industrialized countries, as excessive iron is highly toxic for liver and spleen. The potential use of curcumin as an iron chelator has not been clearly identified experimentally in iron overload condition. Here, we evaluate the efficacy of curcumin to alleviate iron overload-induced hepatic and splenic abnormalities and to gain insight into the underlying mechanisms. DESIGN AND METHODS: Three groups of male adult rats were treated as follows: control rats, rats treated with iron in a drinking water for 2 months followed by either vehicle or curcumin treatment for 2 more months. Thereafter, we studied the effects of curcumin on iron overload-induced lipid peroxidation and anti-oxidant depletion. RESULTS: Treatment of iron-overloaded rats with curcumin resulted in marked decreases in iron accumulation within liver and spleen. Iron-overloaded rats had significant increases in malonyldialdehyde (MDA), a marker of lipid peroxidation and nitric oxide (NO) in liver and spleen when compared to control group. The effects of iron overload on lipid peroxidation and NO levels were significantly reduced by the intervention treatment with curcumin (P<0.05). Furthermore, the endogenous anti-oxidant activities/levels in liver and spleen were also significantly decreased in chronic iron overload and administration of curcumin restored the decrease in the hepatic and splenic antioxidant activities/levels. CONCLUSION: Our study suggests that curcumin may represent a new horizon in managing iron overload-induced toxicity as well as in pathological diseases characterized by hepatic iron accumulation such as thalassemia, sickle cell anemia, and myelodysplastic syndromes possibly via iron chelation, reduced oxidative stress derived lipid peroxidation and improving the body endogenous antioxidant defense mechanism.


Asunto(s)
Curcumina/farmacología , Sobrecarga de Hierro/metabolismo , Hierro/metabolismo , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Bazo/efectos de los fármacos , Animales , Enfermedad Crónica , Hígado/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Bazo/metabolismo
15.
J Diabetes Metab ; 6(6)2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26823989

RESUMEN

Previous studies suggest that 12/15 lipoxygenase (12/15-LO) is implicated in diabetic vascular complications. We hypothesize that 12/15-LO inhibition attenuates renal inflammation and injury in streptozotocin-induced diabetes. Diabetes was induced in wild-type C57BL/6J (WT) and 12/15-LO deficient mice using streptozotocin. Additionally, four groups of WT mice were also used; control non diabetic, diabetic, diabetic treated with the 12/15-LO inhibitor baicalein for 10 weeks and diabetic treated with baicalein only for the last 4 weeks of the experiment. After 10 weeks of induction of diabetes with streptozotocin, WT diabetic mice exhibited marked elevation in proteinuria together with elevation in the excretion levels of thiobarbituric acid reactive substance (TBARs), a marker of oxidative stress, and monocyte chemoattractant protein-1 (MCP-1), a marker of inflammation and these changes were significantly reduced in 12/15-LO deficient diabetic mice (P<0.05). Similarly, pharmacological inhibition of 12/15-LO with baicalein prevented the elevation in renal 12-HETE production, the major murine metabolic product of 12/15-LO, in diabetic mice, and this effect was associated with decreased proteinuria, TBARs excretion and renal collagen deposition compared to untreated diabetic mice. Interestingly, the protective effects of baicalein were not noticed when only administered in the last 4 weeks of diabetes compared to untreated diabetic mice. WT diabetic mice displayed elevation in renal interleukin-6 (IL-6) levels and these changes were only reduced in diabetic mice treated with baicalein for 10 weeks (P<0.05). The anti-inflammatory effects of baicalein or 12/15-LO deficiency were further confirmed in lipopolysaccharide (LPS)-induced acute renal inflammation as inhibition of 12/15-LO reduced the elevation in renal soluble epoxide hydrolase expression in LPS-injected mice. These results suggest that increased 12/15-LO activity and 12-HETE production contribute to the elevation of renal oxidative stress, inflammation and injury in streptozotocin-induced diabetic mice.

16.
Pharmacol Res ; 85: 45-54, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24841126

RESUMEN

Adenosine provides anti-inflammatory effects in cardiovascular disease via the activation of adenosine A2A receptors; however, the physiological effect of adenosine could be limited due to its phosphorylation by adenosine kinase. We hypothesized that inhibition of adenosine kinase exacerbates extracellular adenosine levels to reduce renal inflammation and injury in streptozotocin-induced diabetes. Diabetes was induced in male C57BL/6 mice by daily injection of streptozotocin (50mg/kg/day, i.p. for 5 days). Control and diabetic mice were then treated with the adenosine kinase inhibitor ABT702 (1.5mg/kg, i.p. two times a week for 8 weeks, n=7-8/group) or the vehicle (5% DMSO). ABT702 treatment reduced blood glucose level in diabetic mice (∼20%; P<0.05). ABT702 also reduced albuminuria and markers of glomerular injury, nephrinuria and podocalyxin excretion levels, in diabetic mice. Renal NADPH oxidase activity and urinary thiobarbituric acid reactive substances (TBARS) excretion, indices of oxidative stress, were also elevated in diabetic mice and ABT702 significantly reduced these changes. ABT702 increased renal endothelial nitric oxide synthase expression (eNOS) and nitrate/nitrite excretion levels in diabetic mice. In addition, the diabetic mice displayed an increase in renal macrophage infiltration, in association with increased renal NFκB activation. Importantly, treatment with ABT702 significantly reduced all these inflammatory parameters (P<0.05). Furthermore, ABT702 decreased glomerular permeability and inflammation and restored the decrease in glomerular occludin expression in vitro in high glucose treated human glomerular endothelial cells. Collectively, the results suggest that the reno-protective effects of ABT702 could be attributed to the reduction in renal inflammation and oxidative stress in diabetic mice.


Asunto(s)
Adenosina Quinasa/antagonistas & inhibidores , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Diabetes Mellitus Experimental/metabolismo , Riñón/efectos de los fármacos , Morfolinas/farmacología , Pirimidinas/farmacología , Adenosina Quinasa/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Glucemia/análisis , Línea Celular , Dextranos/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Masculino , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfolinas/uso terapéutico , NADPH Oxidasas/metabolismo , Nitratos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitritos/metabolismo , Proteinuria/tratamiento farmacológico , Proteinuria/metabolismo , Proteinuria/patología , Pirimidinas/uso terapéutico , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factor de Transcripción ReIA/metabolismo
17.
Drugs R D ; 14(2): 85-94, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24733439

RESUMEN

BACKGROUND: The polyunsaturated, ω-3 fatty acid, docosahexaenoic acid (DHA), claims diverse cytoprotective potentials, although via largely undefined triggers. Thus, we currently first tested the ability of DHA to ameliorate valproate (VPA)-evoked hepatotoxicity, to modulate its anticonvulsant effects, then sought the cellular and molecular basis of such actions. Lastly, we also verified whether DHA may kinetically alter plasma levels/clearance rate of VPA. METHODS AND RESULTS: VPA (500 mg/kg orally for 14 days in rats) evoked prominent hepatotoxicity that appeared as a marked rise (2- to 4-fold) in serum hepatic enzymes (γ-glutamyl transferase [γ-GT], alanine aminotransferase [ALT], and alkaline phosphatase [ALP]), increased hepatic lipid peroxide (LPO) and tumor necrosis factor-alpha (TNFα) levels, as well as myeloperoxidase (MPO) activity (3- to 5-fold), lowering of serum albumin (40 %), and depletion of liver reduced-glutathione (GSH, 35 %). Likewise, histopathologic examination revealed hepatocellular degeneration, replacement by inflammatory cells, focal pericentral necrosis, and micro/macrovesicular steatosis. Concurrent treatment with DHA (250 mg/kg) markedly blunted the elevated levels of liver enzymes, lipid peroxides, TNFα, and MPO activity, while raising serum albumin and hepatic GSH levels. DHA also alleviated most of the cytologic insults linked to VPA. Besides, in a pentylenetetrazole (PTZ) mouse convulsion model, DHA (250 mg/kg) markedly increased the latency in convulsion evoked by VPA, beyond their individual responses. Lastly, pharmacokinetic studies revealed that joint DHA administration did not alter serum VPA concentrations. CONCLUSIONS: DHA substantially ameliorated liver injury induced by VPA, while also markedly boosted its pharmacologic effects. DHA manipulated definite cellular machinery to curb liver oxidative stress and inflammation, without affecting VPA plasma levels. Collectively, these protective and synergy profiles for DHA propose a superior VPA-drug combination regimen.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/dietoterapia , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Ácidos Docosahexaenoicos/uso terapéutico , Pentilenotetrazol/uso terapéutico , Ácido Valproico/toxicidad , Administración Oral , Animales , Anticonvulsivantes/administración & dosificación , Ácidos Docosahexaenoicos/administración & dosificación , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Pentilenotetrazol/administración & dosificación , Ratas , Ratas Sprague-Dawley , Ácido Valproico/administración & dosificación
18.
Am J Physiol Regul Integr Comp Physiol ; 305(7): R701-10, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23883679

RESUMEN

Nitric oxide is a critical regulator of blood pressure (BP) and inflammation, and female spontaneously hypertensive rats (SHR) have higher renal nitric oxide bioavailability than males. We hypothesize that female SHR will have a greater rise in BP and renal T cell infiltration in response to nitric oxide synthase (NOS) inhibition than males. Both male and female SHR displayed a dose-dependent increase in BP to the nonspecific NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME: 2, 5, and 7 mg·kg(-1)·day(-1) for 4 days each); however, females exhibited a greater increase in BP than males. Treatment of male and female SHR with 7 mg·kg(-1)·day(-1) L-NAME for 2 wk significantly increased BP in both sexes; however, prior exposure to L-NAME only increased BP sensitivity to chronic NOS inhibition in females. L-NAME-induced hypertension increased renal T cell infiltration and indices of renal injury in both sexes, yet female SHR exhibited greater increases in Th17 cells and greater decreases in regulatory T cells than males. Chronic L-NAME was also associated with larger increases in renal cortical adhesion molecule expression in female SHR. The use of triple therapy to block L-NAME-mediated increases in BP attenuated L-NAME-induced increases in renal T cell counts and normalized adhesion molecule expression in SHR, suggesting that L-NAME-induced increases in renal T cells were dependent on both increases in BP and NOS inhibition. Our data suggest that NOS is critical in the ability of SHR, females in particular, to maintain BP and limit a pro-inflammatory renal T cell profile.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hipertensión/enzimología , Inflamación/enzimología , Riñón/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Animales , Antihipertensivos/farmacología , Moléculas de Adhesión Celular/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Femenino , Hipertensión/tratamiento farmacológico , Hipertensión/inmunología , Hipertensión/patología , Hipertensión/fisiopatología , Inflamación/inmunología , Inflamación/patología , Inflamación/fisiopatología , Inflamación/prevención & control , Riñón/inmunología , Riñón/patología , Riñón/fisiopatología , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Ratas , Ratas Endogámicas SHR , Factores Sexuales , Linfocitos T/inmunología , Factores de Tiempo
19.
Hypertension ; 62(1): 91-8, 2013 07.
Artículo en Inglés | MEDLINE | ID: mdl-23608660

RESUMEN

Nitric oxide is a pronatriuretic and prodiuretic factor. The highest renal NO synthase (NOS) activity is found in the inner medullary collecting duct. The collecting duct (CD) is the site of daily fine-tune regulation of sodium balance, and led us to hypothesize that a CD-specific deletion of NOS1 would result in an impaired ability to excrete a sodium load leading to a salt-sensitive blood pressure phenotype. We bred AQP2-CRE mice with NOS1 floxed mice to produce flox control and CD-specific NOS1 knockout (CDNOS1KO) littermates. CDs from CDNOS1KO mice produced 75% less nitrite, and urinary nitrite+nitrate (NOx) excretion was significantly blunted in the knockout genotype. When challenged with high dietary sodium, CDNOS1KO mice showed significantly reduced urine output, sodium, chloride, and NOx excretion, and increased mean arterial pressure relative to flox control mice. In humans, urinary NOx is a newly identified biomarker for the progression of hypertension. These findings reveal that NOS1 in the CD is critical in the regulation of fluid-electrolyte balance, and this new genetic model of CD NOS1 gene deletion will be a valuable tool to study salt-dependent blood pressure mechanisms.


Asunto(s)
Homeostasis/fisiología , Hipertensión/metabolismo , Túbulos Renales Colectores/metabolismo , Óxido Nítrico Sintasa de Tipo I/biosíntesis , Animales , Presión Sanguínea , Western Blotting , ADN/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Regulación de la Expresión Génica , Hipertensión/genética , Hipertensión/fisiopatología , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo I/genética , Fenotipo , Sodio/metabolismo , Sodio en la Dieta/toxicidad , Equilibrio Hidroelectrolítico/fisiología
20.
Clin Sci (Lond) ; 125(7): 349-59, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23611540

RESUMEN

We have shown previously that inhibition of sEH (soluble epoxide hydrolase) increased EETs (epoxyeicosatrienoic acids) levels and reduced renal injury in diabetic mice and these changes were associated with induction of HO (haem oxygenase)-1. The present study determines whether the inhibition of HO negates the renoprotective effect of sEH inhibition in diabetic SHR (spontaneously hypertensive rats). After 6 weeks of induction of diabetes with streptozotocin, SHR were divided into the following groups: untreated, treated with the sEH inhibitor t-AUCB {trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid}, treated with the HO inhibitor SnMP (stannous mesoporphyrin), and treated with both inhibitors for 4 more weeks; non-diabetic SHR served as a control group. Induction of diabetes significantly increased renal sEH expression and decreased the renal EETs/DHETEs (dihydroxyeicosatrienoic acid) ratio without affecting HO-1 activity or expression in SHR. Inhibition of sEH with t-AUCB increased the renal EETs/DHETEs ratio and HO-1 activity in diabetic SHR; however, it did not significantly alter systolic blood pressure. Treatment of diabetic SHR with t-AUCB significantly reduced the elevation in urinary albumin and nephrin excretion, whereas co-administration of the HO inhibitor SnMP with t-AUCB prevented these changes. Immunohistochemical analysis revealed elevations in renal fibrosis as indicated by increased renal TGF-ß (transforming growth factor ß) levels and fibronectin expression in diabetic SHR and these changes were reduced with sEH inhibition. Co-administration of SnMP with t-AUCB prevented its ability to reduce renal fibrosis in diabetic SHR. In addition, SnMP treatment also prevented t-AUCB-induced decreases in renal macrophage infiltration, IL-17 expression and MCP-1 levels in diabetic SHR. These findings suggest that HO-1 induction is involved in the protective effect of sEH inhibition against diabetic renal injury.


Asunto(s)
Benzoatos/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Epóxido Hidrolasas/antagonistas & inhibidores , Hemo Oxigenasa (Desciclizante)/fisiología , Urea/análogos & derivados , Actinas/metabolismo , Albuminuria/prevención & control , Animales , Benzoatos/antagonistas & inhibidores , Benzoatos/farmacología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Creatinina/orina , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/fisiopatología , Nefropatías Diabéticas/enzimología , Nefropatías Diabéticas/metabolismo , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Epóxido Hidrolasas/metabolismo , Epóxido Hidrolasas/fisiología , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/antagonistas & inhibidores , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/fisiología , Corteza Renal/metabolismo , Masculino , Proteínas de la Membrana/orina , Metaloporfirinas/farmacología , Ratas , Ratas Endogámicas SHR , Urea/antagonistas & inhibidores , Urea/farmacología , Urea/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...