Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066342

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is protective in cardiovascular disease, lung injury and diabetes yet paradoxically underlies our susceptibility to SARs-CoV2 infection and the fatal heart and lung disease it can induce. Furthermore, diabetic patients have chronic, systemic inflammation and altered ACE2 expression resulting in increased risk of severe COVID-19 and the associated mortality. A drug that could increase ACE2 activity and inhibit cellular uptake of severe acute respiratory syndrome coronavirus 2 (SARs-CoV2), thus decrease infection, would be of high relevance to cardiovascular disease, diabetes and SARs-CoV2 infection. While the need for such a drug lead was highlighted over a decade ago receiving over 600 citations,1 to date, no such drugs are available.2 Here, we report the development of a novel ACE2 stimulator, designated '2A'(international PCT filed), which is a 10 amino acid peptide derived from a snake venom, and demonstrate its in vitro and in vivo efficacy against SARs-CoV2 infection and associated lung inflammation. Peptide 2A also provides remarkable protection against glycaemic dysregulation, weight loss and disease severity in a mouse model of type 1 diabetes. No untoward effects of 2A were observed in these pre-clinical models suggesting its strong clinical translation potential.

2.
Sci Rep ; 13(1): 1814, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725868

RESUMEN

Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical properties. Graphene liquid cell (GLC) TEM offers a platform to directly investigate nanoparticles in their solution phase. Moreover, exploiting high-resolution TEM images of single rotating nanoparticles in GLCs, 3D atomic structures of nanoparticles are reconstructed by a method called "Brownian one-particle reconstruction". We here introduce a 3D atomic structure determination method for multi-element nanoparticle systems. The method, which is based on low-pass filtration and initial 3D model generation customized for different types of multi-element systems, enables reconstruction of high-resolution 3D Coulomb density maps for ordered and disordered multi-element systems and classification of the heteroatom type. Using high-resolution image datasets obtained from TEM simulations of PbSe, CdSe, and FePt nanoparticles that are structurally relaxed with first-principles calculations in the graphene liquid cell, we show that the types and positions of the constituent atoms are precisely determined with root mean square displacement values less than 24 pm. Our study suggests that it is possible to investigate the 3D atomic structures of synthesized multi-element nanoparticles in liquid phase.

3.
J Biol Chem ; 296: 100671, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33864814

RESUMEN

The SAGA-like complex SLIK is a modified version of the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. SLIK is formed through C-terminal truncation of the Spt7 SAGA subunit, causing loss of Spt8, one of the subunits that interacts with the TATA-binding protein (TBP). SLIK and SAGA are both coactivators of RNA polymerase II transcription in yeast, and both SAGA and SLIK perform chromatin modifications. The two complexes have been speculated to uniquely contribute to transcriptional regulation, but their respective contributions are not clear. To investigate, we assayed the chromatin modifying functions of SAGA and SLIK, revealing identical kinetics on minimal substrates in vitro. We also examined the binding of SAGA and SLIK to TBP and concluded that interestingly, both protein complexes have similar affinity for TBP. Additionally, despite the loss of Spt8 and C-terminus of Spt7 in SLIK, TBP prebound to SLIK is not released in the presence of TATA-box DNA, just like TBP prebound to SAGA. Furthermore, we determined a low-resolution cryo-EM structure of SLIK, revealing a modular architecture identical to SAGA. Finally, we performed a comprehensive study of DNA-binding properties of both coactivators. Purified SAGA and SLIK both associate with ssDNA and dsDNA with high affinity (KD = 10-17 nM), and the binding is sequence-independent. In conclusion, our study shows that the cleavage of Spt7 and the absence of the Spt8 subunit in SLIK neither drive any major conformational differences in its structure compared with SAGA, nor significantly affect HAT, DUB, or DNA-binding activities in vitro.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Unión Proteica , Conformación Proteica , Subunidades de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética
4.
Sci Adv ; 7(5)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33514557

RESUMEN

Analysis of the three-dimensional (3D) structures of nanocrystals with solution-phase transmission electron microscopy is beginning to reveal their unique physiochemical properties. We developed a "one-particle Brownian 3D reconstruction method" based on imaging of ensembles of colloidal nanocrystals using graphene liquid cell electron microscopy. Projection images of differently rotated nanocrystals are acquired using a direct electron detector with high temporal (<2.5 ms) resolution and analyzed to obtain an ensemble of 3D reconstructions. Here, we introduce computational methods required for successful atomic-resolution 3D reconstruction: (i) tracking of the individual particles throughout the time series, (ii) subtraction of the interfering background of the graphene liquid cell, (iii) identification and rejection of low-quality images, and (iv) tailored strategies for 2D/3D alignment and averaging that differ from those used in biological cryo-electron microscopy. Our developments are made available through the open-source software package SINGLE.

5.
J Struct Biol X ; 4: 100040, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33294840

RESUMEN

We here introduce the third major release of the SIMPLE (Single-particle IMage Processing Linux Engine) open-source software package for analysis of cryogenic transmission electron microscopy (cryo-EM) movies of single-particles (Single-Particle Analysis, SPA). Development of SIMPLE 3.0 has been focused on real-time data processing using minimal CPU computing resources to allow easy and cost-efficient scaling of processing as data rates escalate. Our stream SPA tool implements the steps of anisotropic motion correction and CTF estimation, rapid template-based particle identification and 2D clustering with automatic class rejection. SIMPLE 3.0 additionally features an easy-to-use web-based graphical user interface (GUI) that can be run on any device (workstation, laptop, tablet or phone) and supports a remote multi-user environment over the network. The new project-based execution model automatically records the executed workflow and represents it as a flow diagram in the GUI. This facilitates meta-data handling and greatly simplifies usage. Using SIMPLE 3.0, it is possible to automatically obtain a clean SP data set amenable to high-resolution 3D reconstruction directly upon completion of the data acquisition, without the need for extensive image processing post collection. Only minimal standard CPU computing resources are required to keep up with a rate of ∼300 Gatan K3 direct electron detector movies per hour. SIMPLE 3.0 is available for download from simplecryoem.com.

7.
Bioinformatics ; 36(7): 2237-2243, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31790146

RESUMEN

MOTIVATION: No rigorous statistical tests for detecting point-group symmetry in three-dimensional (3D) charge density maps obtained by electron microscopy (EM) and related techniques have been developed. RESULTS: We propose a method for determining the point-group symmetry of 3D charge density maps obtained by EM and related techniques. Our ab initio algorithm does not depend on atomic coordinates but utilizes the density map directly. We validate the approach for a range of publicly available single-particle cryo-EM datasets. In straightforward cases, our method enables fully automated single-particle 3D reconstruction without having to input an arbitrarily selected point-group symmetry. When pseudo-symmetry is present, our method provides statistics quantifying the degree to which the 3D density agrees with the different point-groups tested. AVAILABILITY AND IMPLEMENTATION: The software is freely available at https://github.com/hael/SIMPLE3.0.


Asunto(s)
Algoritmos , Programas Informáticos , Microscopía por Crioelectrón , Imagenología Tridimensional
8.
J Struct Biol ; 207(3): 327-331, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31323306

RESUMEN

Cryogenic electron microscopy (cryo-EM) allows structure determination of macromolecular assemblies that have resisted other structural biology approaches because of their size and heterogeneity. These challenging multi-protein targets are typically susceptible to dissociation and/or denaturation upon cryo-EM grid preparation, and often require crosslinking prior to freezing. Several approaches for gentle on-column or in-tube crosslinking have been developed. On-column crosslinking is not widely applicable because of the poor separation properties of gel filtration techniques. In-tube crosslinking frequently causes sample aggregation and/or precipitation. Gradient-based crosslinking through the GraFix method is more robust, but very time-consuming and necessitates specialised expensive equipment. Furthermore, removal of the glycerol typically involves significant sample loss and may cause destabilization detrimental to the sample quality. Here, we introduce an alternative procedure: AgarFix (Agarose Fixation). The sample is embedded in an agarose matrix that keeps the molecules separated, thus preventing formation of aggregates upon cross-inking. Gentle crosslinking is accomplished by diffusion of the cross-linker into the agarose drop. The sample is recovered by diffusion or electroelution and can readily be used for cryo-EM specimen preparation. AgarFix requires minimal equipment and basic lab experience, making it widely accessible to the cryo-EM community.


Asunto(s)
Microscopía por Crioelectrón/métodos , Sefarosa/química , Imagen Individual de Molécula/métodos , Manejo de Especímenes/métodos , Reactivos de Enlaces Cruzados/química , Agregado de Proteínas , Proteínas/química , Proteínas/ultraestructura , Reproducibilidad de los Resultados
9.
Int J Mol Sci ; 20(13)2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31277458

RESUMEN

The general transcription factor TFIID is a core promoter selectivity factor that recognizes DNA sequence elements and nucleates the assembly of a pre-initiation complex (PIC). The mechanism by which TFIID recognizes the promoter is poorly understood. The TATA-box binding protein (TBP) is a subunit of the multi-protein TFIID complex believed to be key in this process. We reconstituted transcription from highly purified components on a ribosomal protein gene (RPS5) and discovered that TFIIDΔTBP binds and rearranges the promoter DNA topology independent of TBP. TFIIDΔTBP binds ~200 bp of the promoter and changes the DNA topology to a larger extent than the nucleosome core particle. We show that TBP inhibits the DNA binding activities of TFIIDΔTBP and conclude that the complete TFIID complex may represent an auto-inhibited state. Furthermore, we show that the DNA binding activities of TFIIDΔTBP are required for assembly of a PIC poised to select the correct transcription start site (TSS).


Asunto(s)
Reordenamiento Génico/genética , Regiones Promotoras Genéticas , Proteínas Ribosómicas/genética , TATA Box/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , ADN/metabolismo , Genes Esenciales , Imagenología Tridimensional , Unión Proteica , Transcripción Genética
10.
J Struct Biol ; 204(2): 172-181, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30092280

RESUMEN

Cryogenic electron microscopy (cryo-EM) and single-particle analysis enables determination of near-atomic resolution structures of biological molecules. However, large computational requirements limit throughput and rapid testing of new image processing tools. We developed PRIME, an algorithm part of the SIMPLE software suite, for determination of the relative 3D orientations of single-particle projection images. PRIME has primarily found use for generation of an initial ab initio 3D reconstruction. Here we show that the strategy behind PRIME, iterative estimation of per-particle orientation distributions with stochastic hill climbing, provides a competitive approach to near-atomic resolution single-particle 3D reconstruction. A number of mathematical techniques for accelerating the convergence rate are introduced, leading to a speedup of nearly two orders of magnitude. We benchmarked our developments on numerous publicly available data sets and conclude that near-atomic resolution ab initio 3D reconstructions can be obtained with SIMPLE in a matter of hours, using standard over-the-counter CPU workstations.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Algoritmos , Microscopía por Crioelectrón
11.
Protein Sci ; 27(1): 51-61, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28795512

RESUMEN

Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. We developed the SIMPLE open-source image-processing suite for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic optimization algorithms that improve the robustness of the approach. Our refined method for identification of homogeneous subsets of images in accurate register substantially improves the resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent parallel code performance on over-the-counter laptops and CPU workstations is demonstrated.


Asunto(s)
Algoritmos , Microscopía por Crioelectrón , Imagenología Tridimensional , Programas Informáticos
12.
Curr Opin Struct Biol ; 46: 1-6, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28342396

RESUMEN

Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. Successful high-resolution structure determination by cryo-EM always depends on the quality of the protein sample. While structural heterogeneity remains a key challenge for cryo-EM, it also represents a rare opportunity to study the intrinsic conformational flexibility of macromolecular assemblies. Here, we review the key technological advancements that have made this 'resolution revolution' possible and give a concise overview of the technical challenges that needed to be overcome to allow high-resolution structure determination.


Asunto(s)
Microscopía por Crioelectrón/métodos , Relación Señal-Ruido , Artefactos , Microscopía por Crioelectrón/instrumentación , Humanos , Movimiento (Física)
13.
Structure ; 24(6): 988-96, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27184214

RESUMEN

A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers.


Asunto(s)
Microscopía por Crioelectrón/métodos , Imagenología Tridimensional/métodos , Algoritmos , Análisis por Conglomerados , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares
14.
Annu Rev Biochem ; 84: 499-517, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25747402

RESUMEN

About 20 years ago, the first three-dimensional (3D) reconstructions at subnanometer (<10-Å) resolution of an icosahedral virus assembly were obtained by cryogenic electron microscopy (cryo-EM) and single-particle analysis. Since then, thousands of structures have been determined to resolutions ranging from 30 Å to near atomic (<4 Å). Almost overnight, the recent development of direct electron detectors and the attendant improvement in analysis software have advanced the technology considerably. Near-atomic-resolution reconstructions can now be obtained, not only for megadalton macromolecular complexes or highly symmetrical assemblies but also for proteins of only a few hundred kilodaltons. We discuss the developments that led to this breakthrough in high-resolution structure determination by cryo-EM and point to challenges that lie ahead.


Asunto(s)
Microscopía por Crioelectrón/métodos , Microscopía por Crioelectrón/instrumentación , Células Eucariotas/ultraestructura , Sustancias Macromoleculares/ultraestructura , Modelos Moleculares , Ribosomas/ultraestructura , Programas Informáticos
15.
Biochim Biophys Acta ; 1837(3): 385-95, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24407142

RESUMEN

The major light harvesting complex in cyanobacteria and red algae is the phycobilisome (PBS), comprised of hundreds of seemingly similar chromophores, which are protein bound and assembled in a fashion that enables highly efficient uni-directional energy transfer to reaction centers. The PBS is comprised of a core containing 2-5 cylinders surrounded by 6-8 rods, and a number of models have been proposed describing the PBS structure. One of the most critical steps in the functionality of the PBS is energy transfer from the rod substructures to the core substructure. In this study we compare the structural and functional characteristics of high-phosphate stabilized PBS (the standard fashion of stabilization of isolated complexes) with cross-linked PBS in low ionic strength buffer from two cyanobacterial species, Thermosynechococcus vulcanus and Acaryochloris marina. We show that chemical cross-linking preserves efficient energy transfer from the phycocyanin containing rods to the allophycocyanin containing cores with fluorescent emission from the terminal emitters. However, this energy transfer is shown to exist in PBS complexes of different structures as characterized by determination of a 2.4Å structure by X-ray crystallography, single crystal confocal microscopy, mass spectrometry and transmission electron microscopy of negatively stained and cryogenically preserved complexes. We conclude that the PBS has intrinsic structural properties that enable efficient energy transfer from rod substructures to the core substructures without requiring a single unique structure. We discuss the significance of our observations on the functionality of the PBS in vivo.


Asunto(s)
Cianobacterias/metabolismo , Transferencia de Energía , Ficobilisomas/metabolismo , Ficobilisomas/ultraestructura , Reactivos de Enlaces Cruzados/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Cianobacterias/clasificación , Microscopía Confocal , Microscopía Electrónica de Transmisión , Ficobilisomas/química , Especificidad de la Especie
16.
Science ; 342(6159): 1238724, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24072820

RESUMEN

The protein density and arrangement of subunits of a complete, 32-protein, RNA polymerase II (pol II) transcription pre-initiation complex (PIC) were determined by means of cryogenic electron microscopy and a combination of chemical cross-linking and mass spectrometry. The PIC showed a marked division in two parts, one containing all the general transcription factors (GTFs) and the other pol II. Promoter DNA was associated only with the GTFs, suspended above the pol II cleft and not in contact with pol II. This structural principle of the PIC underlies its conversion to a transcriptionally active state; the PIC is poised for the formation of a transcription bubble and descent of the DNA into the pol II cleft.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos/química , ARN Polimerasa II/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Factores Generales de Transcripción/química , Iniciación de la Transcripción Genética , Microscopía por Crioelectrón , ADN de Hongos/química , ADN de Hongos/genética , Conformación de Ácido Nucleico , Conformación Proteica , Saccharomyces cerevisiae/genética
17.
Structure ; 21(8): 1299-306, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23931142

RESUMEN

Low-dose electron microscopy of cryo-preserved individual biomolecules (single-particle cryo-EM) is a powerful tool for obtaining information about the structure and dynamics of large macromolecular assemblies. Acquiring images with low dose reduces radiation damage, preserves atomic structural details, but results in low signal-to-noise ratio of the individual images. The projection directions of the two-dimensional images are random and unknown. The grand challenge is to achieve the precise three-dimensional (3D) alignment of many (tens of thousands to millions) noisy projection images, which may then be combined to obtain a faithful 3D map. An accurate initial 3D model is critical for obtaining the precise 3D alignment required for high-resolution (<10 Å) map reconstruction. We report a method (PRIME) that, in a single step and without prior structural knowledge, can generate an accurate initial 3D map directly from the noisy images.


Asunto(s)
Microscopía por Crioelectrón/métodos , Sustancias Macromoleculares/ultraestructura , Imagenología Tridimensional/métodos , Modelos Moleculares , Modelos Estadísticos , Ribosomas/ultraestructura , Programas Informáticos
18.
J Struct Biol ; 180(3): 420-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22902564

RESUMEN

The open source software suite SIMPLE: Single-particle IMage Processing Linux Engine provides data analysis methods for single-particle cryo-electron microscopy (cryo-EM). SIMPLE addresses the problem of obtaining 3D reconstructions from 2D projections only, without using an input reference volume for approximating orientations. The SIMPLE reconstruction algorithm is tailored to asymmetrical and structurally heterogeneous single-particles. Its basis is global optimization with the use of Fourier common lines. The advance that enables ab initio reconstruction and heterogeneity analysis is the separation of the tasks of in-plane alignment and projection direction determination via bijective orientation search - a new concept in common lines-based strategies. Bijective orientation search divides the configuration space into two groups of paired parameters that are optimized separately. The first group consists of the rotations and shifts in the plane of the projection; the second group consists of the projection directions and state assignments. In SIMPLE, ab initio reconstruction is feasible because the 3D in-plane alignment is approximated using reference-free 2D rotational alignment. The subsequent common lines-based search hence searches projection directions and states only. Thousands of class averages are analyzed simultaneously in a matter of hours. Novice SIMPLE users get a head start via the well documented front-end. The structured, object-oriented back-end invites advanced users to develop new alignment and reconstruction algorithms. An overview of the package is presented together with benchmarks on simulated data. Executable binaries, source code, and documentation are available at http://simple.stanford.edu.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Programas Informáticos , Algoritmos , Simulación por Computador , Microscopía por Crioelectrón , Análisis de Fourier , Imagenología Tridimensional
19.
Biochemistry ; 50(18): 3713-23, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21456578

RESUMEN

Thioredoxin and thioredoxin reductase can regulate cell metabolism through redox regulation of disulfide bridges or through removal of H(2)O(2). These two enzymatic functions are combined in NADPH-dependent thioredoxin reductase C (NTRC), which contains an N-terminal thioredoxin reductase domain fused with a C-terminal thioredoxin domain. Rice NTRC exists in different oligomeric states, depending on the absence or presence of its NADPH cofactor. It has been suggested that the different oligomeric states may have diverse activity. Thus, the redox status of the chloroplast could influence the oligomeric state of NTRC and thereby its activity. We have characterized the oligomeric states of NTRC from barley (Hordeum vulgare L.). This also includes a structural model of the tetrameric NTRC derived from cryo-electron microscopy and single-particle reconstruction. We conclude that the tetrameric NTRC is a dimeric arrangement of two NTRC homodimers. Unlike that of rice NTRC, the quaternary structure of barley NTRC complexes is unaffected by addition of NADPH. The activity of NTRC was tested with two different enzyme assays. The N-terminal part of NTRC was tested in a thioredoxin reductase assay. A peroxide sensitive Mg-protoporphyrin IX monomethyl ester (MPE) cyclase enzyme system of the chlorophyll biosynthetic pathway was used to test the catalytic ability of both the N- and C-terminal parts of NTRC. The different oligomeric assembly states do not exhibit significantly different activities. Thus, it appears that the activities are independent of the oligomeric state of barley NTRC.


Asunto(s)
Hordeum/enzimología , NADP/química , Reductasa de Tiorredoxina-Disulfuro/química , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Dimerización , Magnesio/química , Conformación Molecular , Datos de Secuencia Molecular , Oxidación-Reducción , Peróxidos/química , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Tiorredoxinas/química
20.
Protein Sci ; 20(2): 291-301, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21280121

RESUMEN

Unfolding proteins are prevented from irreversible aggregation by small heat shock proteins (sHsps) through interactions that depend on a dynamic equilibrium between sHsp subunits and sHsp oligomers. A chloroplast-localized sHsp, Hsp21, provides protection to client proteins to increase plant stress resistance. Structural information is lacking concerning the oligomeric conformation of this sHsp. We here present a structure model of Arabidopsis thaliana Hsp21, obtained by homology modeling, single-particle electron microscopy, and lysine-specific chemical crosslinking. The model shows that the Hsp21 subunits are arranged in two hexameric discs, similar to a cytosolic plant sHsp homolog that has been structurally determined after crystallization. However, the two hexameric discs of Hsp21 are rotated by 25° in relation to each other, suggesting a role for global dynamics in dodecamer function.


Asunto(s)
Proteínas de Arabidopsis/química , Cloroplastos/química , Proteínas de Choque Térmico/química , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Reactivos de Enlaces Cruzados , Citosol/química , Citosol/metabolismo , Proteínas de Choque Térmico/metabolismo , Procesamiento de Imagen Asistido por Computador , Lisina/química , Lisina/metabolismo , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA