Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Immunol ; 9(93): eadd4818, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427718

RESUMEN

T follicular helper (TFH) cells are essential for effective antibody responses, but deciphering the intrinsic wiring of mouse TFH cells has long been hampered by the lack of a reliable protocol for their generation in vitro. We report that transforming growth factor-ß (TGF-ß) induces robust expression of TFH hallmark molecules CXCR5 and Bcl6 in activated mouse CD4+ T cells in vitro. TGF-ß-induced mouse CXCR5+ TFH cells are phenotypically, transcriptionally, and functionally similar to in vivo-generated TFH cells and provide critical help to B cells. The study further reveals that TGF-ß-induced CXCR5 expression is independent of Bcl6 but requires the transcription factor c-Maf. Classical TGF-ß-containing T helper 17 (TH17)-inducing conditions also yield separate CXCR5+ and IL-17A-producing cells, highlighting shared and distinct cell fate trajectories of TFH and TH17 cells. We demonstrate that excess IL-2 in high-density T cell cultures interferes with the TGF-ß-induced TFH cell program, that TFH and TH17 cells share a common developmental stage, and that c-Maf acts as a switch factor for TFH versus TH17 cell fates in TGF-ß-rich environments in vitro and in vivo.


Asunto(s)
Linfocitos T Colaboradores-Inductores , Factor de Crecimiento Transformador beta , Animales , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Linfocitos B , Linfocitos T CD4-Positivos , Diferenciación Celular , Proteínas Proto-Oncogénicas c-maf/metabolismo
2.
Nat Immunol ; 25(3): 496-511, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38356058

RESUMEN

Visceral adipose tissue (VAT) is an energy store and endocrine organ critical for metabolic homeostasis. Regulatory T (Treg) cells restrain inflammation to preserve VAT homeostasis and glucose tolerance. Here, we show that the VAT harbors two distinct Treg cell populations: prototypical serum stimulation 2-positive (ST2+) Treg cells that are enriched in males and a previously uncharacterized population of C-X-C motif chemokine receptor 3-positive (CXCR3+) Treg cells that are enriched in females. We show that the transcription factors GATA-binding protein 3 and peroxisome proliferator-activated receptor-γ, together with the cytokine interleukin-33, promote the differentiation of ST2+ VAT Treg cells but repress CXCR3+ Treg cells. Conversely, the differentiation of CXCR3+ Treg cells is mediated by the cytokine interferon-γ and the transcription factor T-bet, which also antagonize ST2+ Treg cells. Finally, we demonstrate that ST2+ Treg cells preserve glucose homeostasis, whereas CXCR3+ Treg cells restrain inflammation in lean VAT and prevent glucose intolerance under high-fat diet conditions. Overall, this study defines two molecularly and developmentally distinct VAT Treg cell types with unique context- and sex-specific functions.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1 , Linfocitos T Reguladores , Femenino , Masculino , Humanos , Grasa Intraabdominal , Citocinas , Inflamación , Glucosa
3.
Cell Rep Methods ; 3(10): 100598, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37776856

RESUMEN

Spatially resolved omics technologies reveal context-dependent cellular regulatory networks in tissues of interest. Beyond transcriptome analysis, information on epigenetic traits and chromatin accessibility can provide further insights on gene regulation in health and disease. Nevertheless, compared to the enormous advancements in spatial transcriptomics technologies, the field of spatial epigenomics is much younger and still underexplored. In this study, we report laser capture microdissection coupled to ATAC-seq (LCM-ATAC-seq) applied to fresh frozen samples for the spatial characterization of chromatin accessibility. We first demonstrate the efficient use of LCM coupled to in situ tagmentation and evaluate its performance as a function of cell number, microdissected areas, and tissue type. Further, we demonstrate its use for the targeted chromatin accessibility analysis of discrete contiguous or scattered cell populations in tissues via single-nuclei capture based on immunostaining for specific cellular markers.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Cromatina/genética , Captura por Microdisección con Láser , Perfilación de la Expresión Génica , Congelación
4.
Front Immunol ; 14: 1107397, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559728

RESUMEN

CD4+ T cells play a central role in the adaptive immune response through their capacity to activate, support and control other immune cells. Although these cells have become the focus of intense research, a comprehensive understanding of the underlying regulatory networks that orchestrate CD4+ T cell function and activation is still incomplete. Here, we analyzed a large transcriptomic dataset consisting of 48 different human CD4+ T cell conditions. By performing reverse network engineering, we identified six common denominators of CD4+ T cell functionality (CREB1, E2F3, AHR, STAT1, NFAT5 and NFATC3). Moreover, we also analyzed condition-specific genes which led us to the identification of the transcription factor MEOX1 in Treg cells. Expression of MEOX1 was comparable to FOXP3 in Treg cells and can be upregulated by IL-2. Epigenetic analyses revealed a permissive epigenetic landscape for MEOX1 solely in Treg cells. Knockdown of MEOX1 in Treg cells revealed a profound impact on downstream gene expression programs and Treg cell suppressive capacity. These findings in the context of CD4+ T cells contribute to a better understanding of the transcriptional networks and biological mechanisms controlling CD4+ T cell functionality, which opens new avenues for future therapeutic strategies.


Asunto(s)
Regulación de la Expresión Génica , Linfocitos T Reguladores , Humanos , Redes Reguladoras de Genes , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/genética
5.
Front Immunol ; 13: 954798, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936011

RESUMEN

Treg cells have been initially described as gatekeepers for the control of autoimmunity, as they can actively suppress the activity of other immune cells. However, their role goes beyond this as Treg cells further control immune responses during infections and tumor development. Furthermore, Treg cells can acquire additional properties for e.g., the control of tissue homeostasis. This is instructed by a specific differentiation program and the acquisition of effector properties unique to Treg cells in non-lymphoid tissues. These tissue Treg cells can further adapt to their tissue environment and acquire distinct functional properties through specific transcription factors activated by a combination of tissue derived factors, including tissue-specific antigens and cytokines. In this review, we will focus on recent findings extending our current understanding of the role and differentiation of these tissue Treg cells. As such we will highlight the importance of tissue Treg cells for tissue maintenance, regeneration, and repair in adipose tissue, muscle, CNS, liver, kidney, reproductive organs, and the lung.


Asunto(s)
Autoinmunidad , Linfocitos T Reguladores , Antígenos , Diferenciación Celular , Homeostasis , Factores de Transcripción
6.
EMBO J ; 41(11): e110409, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35451150

RESUMEN

Astrocytes are highly abundant in the mammalian brain, and their functions are of vital importance for all aspects of development, adaption, and aging of the central nervous system (CNS). Mounting evidence indicates the important contributions of astrocytes to a wide range of neuropathies. Still, our understanding of astrocyte development significantly lags behind that of other CNS cells. We here combine immunohistochemical approaches with genetic fate-mapping, behavioural paradigms, single-cell transcriptomics, and in vivo two-photon imaging, to comprehensively assess the generation and the proliferation of astrocytes in the dentate gyrus (DG) across the life span of a mouse. Astrogenesis in the DG is initiated by radial glia-like neural stem cells giving rise to locally dividing astrocytes that enlarge the astrocyte compartment in an outside-in-pattern. Also in the adult DG, the vast majority of astrogenesis is mediated through the proliferation of local astrocytes. Interestingly, locally dividing astrocytes were able to adapt their proliferation to environmental and behavioral stimuli revealing an unexpected plasticity. Our study establishes astrocytes as enduring plastic elements in DG circuits, implicating a vital contribution of astrocyte dynamics to hippocampal plasticity.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Animales , Astrocitos/fisiología , Giro Dentado , Hipocampo/fisiología , Mamíferos , Ratones , Células-Madre Neurales/fisiología , Neurogénesis/fisiología
7.
Nat Commun ; 12(1): 7322, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34916498

RESUMEN

Blastocyst-derived stem cell lines were shown to self-organize into embryo-like structures in 3D cell culture environments. Here, we provide evidence that embryo-like structures can be generated solely based on transcription factor-mediated reprogramming of embryonic stem cells in a simple 3D co-culture system. Embryonic stem cells in these cultures self-organize into elongated, compartmentalized embryo-like structures reflecting aspects of the inner regions of the early post-implantation embryo. Single-cell RNA-sequencing reveals transcriptional profiles resembling epiblast, primitive-/visceral endoderm, and extraembryonic ectoderm of early murine embryos around E4.5-E5.5. In this stem cell-based embryo model, progression from rosette formation to lumenogenesis accompanied by progression from naïve- to primed pluripotency was observed within Epi-like cells. Additionally, lineage specification of primordial germ cells and distal/anterior visceral endoderm-like cells was observed in epiblast- or visceral endoderm-like compartments, respectively. The system presented in this study allows for fast and reproducible generation of embryo-like structures, providing an additional tool to study aspects of early embryogenesis.


Asunto(s)
Cuerpos Embrioides/citología , Desarrollo Embrionario , Células Madre Embrionarias/citología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Técnicas de Cultivo Tridimensional de Células , Reprogramación Celular , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias/metabolismo , Endodermo/embriología , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , RNA-Seq
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA