Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 650: 123683, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38092264

RESUMEN

Curcumin has gained great prominence for the prevention and treatment of inflammatory bowel disease. However, studies have reported the low bioavailability of orally administered curcumin. This work aimed to evaluate the characteristics, stability and effects of a curcumin-carrying nanoemulsion in preventing intestinal damage induced by indomethacin. Nanoemulsions containing curcumin were prepared by spontaneous emulsification method and it was characterized by dynamic light scattering (DLS), zeta potential and the morphology was evaluated by scanning electron microscopy (SEM). Its stability was tested under different conditions of pH, temperature at 0, 7, 14, 21 and 28 days. In animal experimentation, 36 male mice of the Mus musculus lineage (C57BL/6) were used. The intestinal inflammation was evaluated based on macroscopic, histopathological and metagenomic analysis. It was found a stable nanoemulsion with a size of 409.8 nm, polydispersion index (PDI) of 0.132 and zeta potential of -18.8 mV. However, these lost charge in pH2, showing instability in acidic media (p < 0.05). In animal experiments, the nanoemulsion did not significantly improve intestinal inflammation. However, the group treated with curcumin nanoemulsion showed a higher relative abundance of the genus Lactobacillus (p < 0.05). In conclusion, the curcumin nanoemulsion was relevant in the modulation of the intestinal microbiota.


Asunto(s)
Curcumina , Ratones , Masculino , Animales , Emulsiones/química , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Inflamación
2.
J Toxicol Environ Health A ; 87(2): 57-76, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37929327

RESUMEN

The present study aimed to determine the biological properties of an extract of Solanum aculeatissimum aqueous extract (SaCE) alone as well as silver nanoparticles (AgNPs) generated by green synthesis utilizing S. aculeatissimum aqueous extract (SaCE). These synthesized SaCE AgNPs were characterized using UV-VIS spectrophotometry, scanning transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), zeta potential (ZP), dynamic light scattering (DLS). Determination of total polyphenols, flavonoids, saponins content was conducted. In addition, high performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to identify constituents in this extract. Antioxidant activity was determined by DPPH radical scavenging and ferric ion reducing power (FRAP) methods. Antiglycation activity was demonstrated through relative mobility in electrophoresis (RME) and determination of free amino groups. The inhibitory activity on tyrosinase was also examined. Molecular docking analyses were performed to assess the molecular interactions with DNA and tyrosinase. The antitumor activity SaCE was also measured. Phytochemical analysis of SaCE and AgNPs showed presence polyphenols (1000.41 and 293.37 mg gallic acid equivalent/g), flavonoids (954.87 and 479.87 mg rutin equivalent/g), saponins (37.89 and 23.01% total saponins), in particular steroidal saponins (aculeatiside A and B). Both SaCE and AgNPs exhibited significant antioxidant (respectively, 73.97%, 56.27% in DPPH test, 874.67 and 837.67 µM Trolox Equivalent/g in FRAP test) and antiglycation activities (72.81 and 67.98% free amino groups, results observed in RME). SaCE and AgNPs presented 33.2, 36.1% inhibitory activity on tyrosinase, respectively. In silico assay demonstrated interaction between steroidal saponins, DNA or tyrosinase. SaCE exhibited antitumor action against various human tumor cells. Data demonstrated that extracts SaCE alone and AgNPs synthesized from SaCE presented biological properties of interest for application in new therapeutic formulations in medicine.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Saponinas , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Monofenol Monooxigenasa , Plata/farmacología , Nanopartículas del Metal/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antineoplásicos/farmacología , Flavonoides/farmacología , ADN , Antibacterianos/farmacología
3.
Bioresour Technol ; 380: 129096, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37100301

RESUMEN

Materials based on cellulose have been widely used as a decontaminant agent of wastewater. However, it can not be found in the literature any application of the cationic dialdehyde cellulose (cDAC) in anionic dye removal. Therefore, this study aims a circular economy concept using sugarcane bagasse to obtain a functionalized cellulose by oxidation and cationization. cDAC was characterized by SEM, FT-IR, oxidation degree, and DSC. Adsorption capacity was evaluated by pH, kinetic, concentration effect, strength ionic tests, and recycling. The kinetic followed Elovich model (R2 = 0.92605 for EBT = 100 mg/L) and non-linear Langmuir model (R2 = 0.94542), which resulted in a maximum adsorption capacity of 563.30 mg/g. The cellulose adsorbent reached an efficient recyclability of 4 cycles. Thus, this work presents a potential material to become a new, clean, low-cost, recyclable, and environmentally friendly alternative for effluent decontamination-containing dyes.


Asunto(s)
Saccharum , Contaminantes Químicos del Agua , Celulosa/química , Espectroscopía Infrarroja por Transformada de Fourier , Saccharum/química , Colorantes/química , Cationes/química , Adsorción , Cinética , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...