Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 591, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670295

RESUMEN

BACKGROUND: Fabry disease (FD) is a rare lysosomal storage disorder caused by mutations in the GLA gene, resulting in reduced or lack of α-galactosidase A activity. This results in the accumulation of globotriaosylceramide (Gb3) and other glycosphingolipids in lysosomes causing cellular impairment and organ failures. While current therapies focus on reversing Gb3 accumulation, they do not address the altered cellular signaling in FD. Therefore, this study aims to explore Gb3-independent mechanisms of kidney damage in Fabry disease and identify potential biomarkers. METHODS: To investigate these mechanisms, we utilized a zebrafish (ZF) gla-/- mutant (MU) model. ZF naturally lack A4GALT gene and, therefore, cannot synthesize Gb3. We obtained kidney samples from both wild-type (WT) (n = 8) and MU (n = 8) ZF and conducted proteome profiling using untargeted mass spectrometry. Additionally, we examined mitochondria morphology and cristae morphology using electron microscopy. To assess oxidative stress, we measured total antioxidant activity. Finally, immunohistochemistry was conducted on kidney samples to validate specific proteins. RESULTS: Our proteomics analysis of renal tissues from zebrafish revealed downregulation of lysosome and mitochondrial-related proteins in gla-/- MU renal tissues, while energy-related pathways including carbon, glycolysis, and galactose metabolisms were disturbed. Moreover, we observed abnormal mitochondrial shape, disrupted cristae morphology, altered mitochondrial volume and lower antioxidant activity in gla-/- MU ZF. CONCLUSIONS: These results suggest that the alterations observed at the proteome and mitochondrial level closely resemble well-known GLA mutation-related alterations in humans. Importantly, they also unveil novel Gb3-independent pathogenic mechanisms in Fabry disease. Understanding these mechanisms could potentially lead to the development of innovative drug screening approaches. Furthermore, the findings pave the way for identifying new clinical targets, offering new avenues for therapeutic interventions in Fabry disease. The zebrafish gla-/- mutant model proves valuable in elucidating these mechanisms and may contribute significantly to advancing our knowledge of this disorder.


Asunto(s)
Enfermedad de Fabry , Animales , Humanos , Antioxidantes , Mitocondrias , Proteoma , Proteómica , Pez Cebra , alfa-Galactosidasa/metabolismo
2.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36613802

RESUMEN

Fabry disease (FD) is an X-linked inborn metabolic disorder due to partial or complete lysosomal α-galactosidase A deficiency. FD is characterized by progressive renal insufficiency and cardio- and cerebrovascular involvement. Restricted access on Gb3-independent tissue injury experimental models has limited the understanding of FD pathophysiology and delayed the development of new therapies. Accumulating glycosphingolipids, mainly Gb3 and lysoGb3, are Fabry specific markers used in clinical follow up. However, recent studies suggest there is a need for additional markers to monitor FD clinical course or response to treatment. We used a gla-knockout zebrafish (ZF) to investigate alternative biomarkers in Gb3-free-conditions. RNA sequencing was used to identify transcriptomic signatures in kidney tissues discriminating gla-mutant (M) from wild type (WT) ZF. Gene Ontology (GO) and KEGG pathways analysis showed upregulation of immune system activation and downregulation of oxidative phosphorylation pathways in kidneys from M ZF. In addition, upregulation of the Ca2+ signaling pathway was also detectable in M ZF kidneys. Importantly, disruption of mitochondrial and lysosome-related pathways observed in M ZF was validated by immunohistochemistry. Thus, this ZF model expands the pathophysiological understanding of FD, the Gb3-independent effects of gla mutations could be used to explore new therapeutic targets for FD.


Asunto(s)
Enfermedad de Fabry , Animales , Enfermedad de Fabry/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , alfa-Galactosidasa/genética , Perfilación de la Expresión Génica , Transducción de Señal , Mutación
3.
BMC Urol ; 21(1): 69, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892694

RESUMEN

BACKGROUND: Male factor is the major contributor in roughly half of infertility cases. Genetic factors account for 10-15% of male infertility. Microdeletions of azoospermia factors (AZF) on the Yq region are the second most frequent spermatogenesis disorder among infertile men after Klinefelter syndrome. We detected in our previous study a frequency of 37.5% AZF microdeletions which investigated mainly the AZFb and AZFc. We attempted in this study for the first time to evaluate the frequencies of all AZF sub-regions microdeletions and to analyze reproductive hormonal profiles in idiopathic cases of azoospermic and oligozoospermic men from Sudan. METHODS: A group of 51 medically fit infertile men were subjected to semen analysis. Four couples have participated in this study as a control group. Semen analysis was performed according to WHO criteria by professionals at Elsir Abu-Elhassan Fertility Centre where samples have been collected. We detected 12 STSs markers of Y chromosome AZF microdeletions using a multiplex polymerase chain reaction. Analysis of reproductive hormone levels including Follicle Stimulating, Luteinizing, and Prolactin hormones was performed using ELISA. Comparisons between outcome groups were performed using Student's t-test Chi-square test or Fisher's exact test. RESULTS: AZF microdeletion was identified in 16 out of 25 Azoospermic and 14 out of 26 of the Oligozoospermic. Microdeletion in the AZFa region was the most frequent among the 30 patients (N = 11) followed by AZFc, AZFd (N = 4 for each) and AZFb (N = 3). Among the Oligozoospermic participants, the most frequent deletions detected were in the AZFa region (N = 10 out of 14) and was significantly associated with Oligozoospermic phenotype, Fisher's Exact Test (2-sided) p = 0.009. Among the Azoospermic patients, the deletion of the AZFc region was the most frequent (N = 9 out of 16) and was significantly associated with Azoospermia phenotype Fisher's Exact Test p = 0.026. There was a significant difference in Y chromosome microdeletion frequency between the two groups. The hormonal analysis showed that the mean levels of PRL, LH, and FSH in Azoospermic patients were slightly higher than those in oligozoospermic. A weak negative correlation between prolactin higher level and Azoospermic patients was detected. (AZFa r = 0.665 and 0.602, p = 0.000 and 0.0004, AZFb r = 0.636 and 0.409, p = 0.000 and 0.025, and AZFd r = 0.398 and 0.442, p = 0.029 and 0.015). The correlation was positive for AZFa and negative for AZFb and AZFd. CONCLUSIONS: We concluded in this study that the incidences of microdeletions of the Y chromosome confined to AZF a, b, c and d regions is 58.8% in infertile subjects with 31.4% were Azoospermic and 27.5% were Oligozoospermic. This might provide a piece of evidence that these specified regions of the Y chromosome are essential for controlling spermatogenesis. These findings will be useful for genetic counseling within infertility clinics in Sudan and to adopt appropriate methods for assisted reproduction.


Asunto(s)
Azoospermia/genética , Hormona Folículo Estimulante/sangre , Infertilidad Masculina/sangre , Infertilidad Masculina/genética , Hormona Luteinizante/sangre , Prolactina/sangre , Técnicas Reproductivas Asistidas , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/sangre , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/genética , Adulto , Deleción Cromosómica , Cromosomas Humanos Y/genética , Humanos , Masculino , Persona de Mediana Edad , Aberraciones Cromosómicas Sexuales , Sudán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA