Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1400348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247195

RESUMEN

Objective: The signal transducer and activator of transcription 3 (STAT3) gain-of-function (GOF) syndrome (STAT3-GOF) is an inborn error of immunity (IEI) characterized by diverse manifestations of immune dysregulation that necessitate systemic immunomodulatory treatment. The blockade of the interleukin-6 receptor and/or the inhibition of the Janus kinases has been commonly employed to treat diverse STAT3-GOF-associated manifestations. However, evidence on long-term treatment outcome, especially in the case of adult patients, is scarce. Methods: Clinical data, including laboratory findings and medical imaging, were collected from all seven patients, diagnosed with STAT3-GOF, who have been treated at the Hannover University School, focusing on those who received a Janus kinase (JAK) inhibitor (JAKi). Previously published cases of STAT3-GOF patients who received a JAKi were evaluated, focusing on reported treatment efficacy with respect to diverse STAT3-GOF-associated manifestations of immune dysregulation and safety. Results: Five out of seven patients diagnosed with STAT3-GOF were treated with a JAKi, each for a different indication. Including these patients, outcomes of JAKi treatment have been reported for a total of 41 patients. Treatment with a JAKi led to improvement of diverse autoimmune, inflammatory, or lymphoproliferative manifestations of STAT3-GOF and a therapeutic benefit could be documented for all except two patients. Considering all reported manifestations of immune dysregulation in each patient, complete remission was achieved in 10/41 (24.4%) treated patients. Conclusions: JAKi treatment improved diverse manifestations of immune dysregulation in the majority of STAT3-GOF patients, representing a promising therapeutic approach. Long-term follow-up data are needed to evaluate possible risks of prolonged treatment with a JAKi.


Asunto(s)
Mutación con Ganancia de Función , Inhibidores de las Cinasas Janus , Factor de Transcripción STAT3 , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Mutación con Ganancia de Función/inmunología , Inhibidores de las Cinasas Janus/uso terapéutico , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Resultado del Tratamiento
2.
Clin Immunol ; 266: 110326, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059757

RESUMEN

The interferon regulatory factor 2 binding protein 2 (IRF2BP2) is a transcriptional regulator, functioning a transcriptional corepressor by interacting with the interferon regulatory factor-2. The ubiquitous expression of IRF2BP2 by diverse cell types and tissues suggests its potential involvement in different cell signalling pathways. Variants inIRF2BP2have been recently identified to cause familial common variable immunodeficiency (CVID) characterized by immune dysregulation. This study investigated three rare novel variants inIRF2BP2, identified in patients with primary antibody deficiency and autoimmunity by whole exome-sequencing (WES). Following transient overexpression of EGFP-fused mutants in HEK293 cells and transfection in Jurkat cell lines, we used fluorescence microscopy, real-time PCR and Western blotting to analyze their effects on IRF2BP2 expression, subcellular localization, nuclear translocation of IRF2, and the transcriptional activation of NFκB1(p50). We found altered IRF2BP2 mRNA and protein expression levels in the mutants compared to the wild type after IRF2BP2 overexpression. In confocal fluorescence microscopy, variants in the C-terminal RING finger domain showed an irregular aggregate formation and distribution instead of the expected nuclear localization compared to the variants in the N-terminal zinc finger domain and their wildtype counterpart. Immunoblotting revealed an impaired IRF2 and NFκB1 (p50) nuclear localization in the mutants compared to the IRF2BP2 wildtype counterpart. LPS stimulation reduced IRF2BP2 mRNA expression in the variants compared to the wild type. Our findings significantly contribute to understanding the clinical significance of IRF2BP2 mutations in the pathogenesis of immunodeficiency and immune dysregulation. We observed impairment of the nuclear translocation of IRF2 and NFκB1 (p50) due to the upregulation of IRF2BP2, potentially affecting specific gene expressions involved in immune regulation.


Asunto(s)
Autoinmunidad , Inmunodeficiencia Variable Común , Humanos , Células HEK293 , Inmunodeficiencia Variable Común/genética , Inmunodeficiencia Variable Común/inmunología , Autoinmunidad/genética , Células Jurkat , Factor 2 Regulador del Interferón/genética , Factor 2 Regulador del Interferón/metabolismo , Factor 2 Regulador del Interferón/inmunología , Masculino , Femenino , Mutación , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Secuenciación del Exoma , Proteínas Co-Represoras/genética , Proteínas de Unión al ADN , Factores de Transcripción
3.
Artículo en Inglés | MEDLINE | ID: mdl-38866210

RESUMEN

BACKGROUND: Human tapasin deficiency is reported to cause an autosomal-recessive inborn error of immunity characterized by substantially reduced cell surface expression of major histocompatibility complex class I (MHC-I). OBJECTIVE: We evaluated the immunologic and clinical consequences of tapasin deficiency. METHODS: A novel homozygous variant in TAPBP was identified by means of whole genome sequencing. The expression of tapasin and both subunits of the transporter associated with antigen presentation (TAP) were evaluated by Western blot analysis. Cell surface and intracellular expression of MHC-I were evaluated by flow cytometry. Small interfering RNAs were used for silencing TAPBP expression in HEK293T cells. RESULTS: We identified a deletion in TAPBP (c.312del, p.(K104Nfs∗6)) causing tapasin deficiency in a patient with bronchiectasis and recurrent respiratory tract infections as well as herpes zoster. Besides substantial reduction in TAP1 and TAP2 expression, peripheral blood mononuclear cells from this patient and TAPBP-knockdown HEK293T cells, displayed reduced cell surface expression of MHC-I, while reduction in intracellular expression of MHC-I was less prominent, suggesting a defect in MHC-I trafficking to the plasma membrane. IFN-α improved cell surface expression of MHC-I in tapasin deficient lymphocytes and TAPBP-knockdown HEK293T cells, representing a possible therapeutic approach for tapasin deficiency. CONCLUSION: Tapasin deficiency is a very rare inborn error of immunity, the pathomechanism and clinical spectrum of which overlaps with TAP deficiencies.

4.
RMD Open ; 9(4)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38088248

RESUMEN

Prolidase deficiency (PD) is a rare autosomal recessive inborn error of immunity caused by biallelic homozygous or compound heterozygous loss-of-function mutations in PEPD, the gene that encodes prolidase. PD typically manifests with variable dysmorphic features, chronic cutaneous ulcers, recurrent infections and autoimmune features, including systemic lupus erythematosus. So far, there is no consensus regarding treatment of PD and its autoimmune manifestations. Here, we present a 28-year-old female patient with PD due to a novel homozygous intragenic deletion in PEPD, diagnosed at the age of 6 years and 7 months with an undifferentiated connective tissue disease that, apart from its very early onset, would be consistent with the diagnosis of Sjögren's syndrome. Steroids and diverse conventional synthetic disease-modifying antirheumatic drugs failed to control PD-associated vasculitis and mucocutaneous ulcerations and led to infectious complications, including cytomegalovirus colitis. Introduction of rituximab (RTX) treatment in this patient led to sustained recession of mucocutaneous ulceration, enabling tapering of steroids. High interleukin-1ß (IL-1ß) production by this patient's monocytes, together with the detection of both IL-1ß and interleukin-18 (IL-18) in her serum, suggest enhanced inflammasome activation in PD, whereas the therapeutic efficacy of RTX implies a role for CD20 positive B cells in the complex immunopathogenesis of PD.


Asunto(s)
Deficiencia de Prolidasa , Síndrome de Sjögren , Femenino , Humanos , Niño , Adulto , Rituximab/uso terapéutico , Variaciones en el Número de Copia de ADN , Deficiencia de Prolidasa/complicaciones , Deficiencia de Prolidasa/diagnóstico , Deficiencia de Prolidasa/tratamiento farmacológico , Síndrome de Sjögren/tratamiento farmacológico , Esteroides/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...