RESUMEN
BACKGROUND: To optimize irrigation water use and productivity, understanding the interactions between plants, irrigation techniques, and fertilization practices is crucial. Therefore, the experiment aims to assess the effectiveness of two application methods of potassium humate combined with chelated zinc under partial root-zone drip irrigation techniques on maize nutrient uptake, yield, and irrigation water use efficiency across two irrigation levels. METHODS: Open-field experiments were carried out in two summer seasons of 2021 and 2022 under alternate and fixed partial root-zone drip irrigation techniques to investigate their impacts at two irrigation levels and applied foliar and soil applications of potassium humate or chelated zinc in a sole and combinations on maize. RESULTS: Deficit irrigation significantly increased hydrogen peroxide levels and decreased proline, antioxidant enzymes, carbohydrate, chlorophyll (a + b), and nutrient uptake in both partial root-zone techniques. The implementation of combined soil application of potassium humate and chelated zinc under drought conditions on maize led to varying impacts on antioxidant enzymes and nutritional status, depending on the type of partial root-zone technique. Meanwhile, the results showed that fixed partial root-zone irrigation diminished the negative effects of drought stress by enhancing phosphorus uptake (53.8%), potassium uptake (59.2%), proline (74.4%) and catalase (75%); compared to the control. These enhancements may contribute to improving the defense system of maize plants in such conditions. On the other hand, the same previous treatments under alternate partial root zone modified the defense mechanism of plants and improved the contents of peroxidase, superoxide dismutase, and the uptake of magnesium, zinc, and iron by 81.3%, 82.3%, 85.1%, 56.9%, and 80.2%, respectively. CONCLUSIONS: Adopting 75% of the irrigation requirements and treating maize plants with the soil application of 3 g l-1 potassium humate combined with 1.25 kg ha-1 chelated zinc under alternate partial root-zone technique, resulted in the maximum root length, leaf water content, chlorophyll content, yield, and irrigation water use efficiency.
Asunto(s)
Riego Agrícola , Raíces de Plantas , Potasio , Zea mays , Zinc , Zea mays/metabolismo , Riego Agrícola/métodos , Zinc/metabolismo , Potasio/metabolismo , Raíces de Plantas/metabolismo , Agua/metabolismo , Clima Desértico , Suelo/química , Sequías , FertilizantesRESUMEN
BACKGROUND: Acacia nilotica Linn. is a widely distributed tree known for its applications in post-harvest and medicinal horticulture. However, its seed-based growth is relatively slow. Seed is a vital component for the propagation of A. nilotica due to its cost-effectiveness, genetic diversity, and ease of handling. Colchicine, commonly used for polyploidy induction in plants, may act as a pollutant at elevated levels. Its optimal concentration for Acacia nilotica's improved growth and development has not yet been determined, and the precise mechanism underlying this phenomenon has not been established. Therefore, this study investigated the impact of optimized colchicine (0.07%) seed treatment on A. nilotica's morphological, anatomical, physiological, fluorescent, and biochemical attributes under controlled conditions, comparing it with a control. RESULTS: Colchicine seed treatment significantly improved various plant attributes compared to control. This included increased shoot length (84.6%), root length (53.5%), shoot fresh weight (59.1%), root fresh weight (42.8%), shoot dry weight (51.5%), root dry weight (40%), fresh biomass (23.6%), stomatal size (35.9%), stomatal density (41.7%), stomatal index (51.2%), leaf thickness (11 times), leaf angle (2.4 times), photosynthetic rate (40%), water use efficiency (2.2 times), substomatal CO2 (36.6%), quantum yield of photosystem II (13.1%), proton flux (3.1 times), proton conductivity (2.3 times), linear electron flow (46.7%), enzymatic activities of catalase (25%), superoxide dismutase (33%), peroxidase (13.5%), and ascorbate peroxidase (28%), 2,2-diphenyl-1-picrylhydrazyl-radical scavenging activities(23%), total antioxidant capacity (59%), total phenolic (23%), and flavonoid content (37%) with less number of days to 80% germination (57.1%), transpiration rate (53.9%), stomatal conductance (67.1%), non-photochemical quenching (82.8%), non-regulatory energy dissipation (24.3%), and H2O2 (25%) and O-2 levels (30%). CONCLUSION: These findings elucidate the intricate mechanism behind the morphological, anatomical, physiological, fluorescent, and biochemical transformative effects of colchicine seed treatment on Acacia nilotica Linn. and offer valuable insights for quick production of A. nilotica's plants with modification and enhancement from seeds through an eco-friendly approach.
Asunto(s)
Acacia , Colchicina , Semillas , Colchicina/farmacología , Acacia/efectos de los fármacos , Acacia/fisiología , Acacia/crecimiento & desarrollo , Acacia/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismoRESUMEN
BACKGROUND: Potato serves as a major non-cereal food crop and income source for small-scale growers in Punjab, Pakistan. Unfortunately, improper fertilization practices have led to low crop yields, worsened by challenging environmental conditions and poor groundwater quality in the Cholistan region. To address this, we conducted an experiment to assess the impact of two fertilizer application approaches on potato cv. Barna using plant growth-promoting bacteria (PGPB) coated biofertilizers. The first approach, termed conventional fertilizer application (CFA), involved four split applications of PGPB-coated fertilizers at a rate of 100:75 kg acre-1 (N and P). The second, modified fertilizer application (MFA), employed nine split applications at a rate of 80:40 kg acre-1. RESULTS: The MFA approach significantly improved various plant attributes compared to the CFA. This included increased plant height (28%), stem number (45%), leaf count (46%), leaf area index (36%), leaf thickness (three-folds), chlorophyll content (53%), quantum yield of photosystem II (45%), photosynthetically active radiations (56%), electrochromic shift (5.6%), proton flux (24.6%), proton conductivity (71%), linear electron flow (72%), photosynthetic rate (35%), water use efficiency (76%), and substomatal CO2 (two-folds), and lowered non-photochemical quenching (56%), non-regulatory energy dissipation (33%), transpiration rate (59%), and stomatal conductance (70%). Additionally, the MFA approach resulted in higher tuber production per plant (21%), average tuber weight (21.9%), tuber diameter (24.5%), total tuber yield (29.1%), marketable yield (22.7%), seed-grade yield (9%), specific gravity (9.6%), and soluble solids (7.1%). It also reduced undesirable factors like goli and downgrade yields by 57.6% and 98.8%, respectively. Furthermore, plants under the MFA approach exhibited enhanced nitrogen (27.8%) and phosphorus uptake (40.6%), with improved N (26.1%) and P uptake efficiency (43.7%) compared to the CFA approach. CONCLUSION: The use of PGPB-coated N and P fertilizers with a higher number of splits at a lower rate significantly boosts potato production in the alkaline sandy soils of Cholistan.
Asunto(s)
Fertilizantes , Nitrógeno , Fósforo , Solanum tuberosum , Fertilizantes/análisis , Fósforo/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Nitrógeno/metabolismo , Pakistán , Suelo/química , Bacterias/metabolismo , Bacterias/crecimiento & desarrolloRESUMEN
The knowledge of proper fertigation across various irrigation levels is necessary for maximizing peanut yield and irrigation use efficiency in arid areas, and it also can effectively alleviate the risk of nutrient deficiency induced by water stress. This study evaluated the effectiveness of cobalt combined with two zinc application methods on peanut nutrient uptake, yield, and irrigation water use efficiency across varying irrigation levels. A split-split plot experiment was carried out in 2021 and 2022. Three peanut gross water requirement (GWR) levels (100%, 80%, and 60%) were designated for main plots. Subplots featured plants treated with either 0 or 7.5 mg L-1 of cobalt. The sub-sub plots assessed chelated zinc effects at rates of 0 and 2 g L-1 via foliar and soil applications. In comparison to the control (100% GWR), nutrient uptake decreased, with sodium being the exception, and there was an increase in soil pH at 60% GWR. The results showed also significant reductions in yield and water use by approximately 60.3% and 38.1%, respectively. At this irrigation level, applying zinc via soil, either alone or combined with cobalt, led to significant yield increases of 89.7% and 191.3% relative to the control. Also, it's crucial to note that cobalt application negatively affected iron and copper at 60% GWR, but this impact was lessened with soil-applied zinc. Hence, under a similar circumstance, treating stressed peanut plants with additional foliar applications of iron + copper and applying zinc via soil, could enhance nutrient uptake and improve yield. On the other hand, at 80% GWR, a combination of foliar-applied zinc and cobalt, had a tremendous impact on the absorption of (nitrogen, phosphorus, magnesium, and zinc), resulting in enhanced agronomic traits and decreased water losses. Additionally, at this irrigation level, foliar zinc application alone yielded a 32.4% increase compared to the 80% GWR control. When combined with cobalt, there was a 70.0% surge in water use. Based on this knowledge, the study suggests using 80% GWR and treating peanut plants with a combination of foliar-applied zinc and cobalt. This strategy aids plants in countering the adverse effects of water stress, ultimately leading to enhanced yield and irrigation water use efficiency.
Asunto(s)
Arachis , Zinc , Deshidratación , Cobre , Suelo , Nutrientes , Hierro , Riego AgrícolaRESUMEN
In recent decades, numerous studies have examined the effects of climate change on the responses of plants. These studies have primarily examined the effects of solitary stress on plants, neglecting the simultaneous effects of mixed stress, which are anticipated to transpire frequently as a result of the extreme climatic fluctuations. Therefore, this study investigated the impact of applied chitosan on boosting the resistance responses of peanuts to alkali and mixed drought-alkali stresses. Peanuts were grown in mid-alkaline soil and irrigated with full irrigation water requirements (100%IR), represented alkali condition (100% IR × alkali soil) and stress conditions (70% IR × alkali soil-represented mixed drought-alkali conditions). Additionally, the plants were either untreated or treated with foliar chitosan. The study evaluated various plant physio-chemical characteristics, including element contents (leaves and roots), seed yield, and irrigation water use efficiency (IWUE). Plants that experienced solitary alkali stress were found to be more vulnerable. However, chitosan applications were effective for reducing (soil pH and sodium absorption), alongside promoting examined physio-chemical measurements, yield traits, and IWUE. Importantly, when chitosan was applied under alkali conditions, the accumulations of (phosphorus, calcium, iron, manganese, zinc, and copper) in leaves and roots were maximized. Under mixed drought-alkali stresses, the results revealed a reduction in yield, reaching about 5.1 and 5.8% lower than under (100% IR × alkali), in the first and second seasons, respectively. Interestingly, treated plants under mixed drought-alkali stresses with chitosan recorded highest values of relative water content, proline, yield, IWUE, and nutrient uptake of (nitrogen, potassium, and magnesium) as well as the lowest sodium content in leaves and roots. Enhances the accumulation of (N, K, and Mg) instead of (phosphorus, calcium, iron, manganese, zinc, and copper) was the primary plant response to chitosan applications, which averted severe damage caused by mixed drought-alkali conditions, over time. These findings provide a framework of the nutrient homeostasis changes induced by chitosan under mixed stresses. Based on the findings, it is recommended under mixed drought-alkali conditions to treat plants with chitosan. This approach offers a promising perspective for achieving optimal yield with reduced water usage.
Asunto(s)
Arachis , Quitosano , Quitosano/farmacología , Calcio , Cobre , Manganeso , Plantas , Sodio , Agua/fisiología , Zinc , Suelo/química , Fósforo , HierroRESUMEN
The current decline in freshwater resources presents a significant global challenge to crop production, a situation expected to intensify with ongoing climate change. This underscores the need for extensive research to enhance crop yields under drought conditions, a priority for scientists given its vital role in global food security. Our study explores the effects of using humic and chitosan treatments to alleviate drought stress during critical growth phases and their impact on crop yield and water efficiency. We employed four different irrigation strategies: full irrigation, 70% irrigation at the early vine development stage, 70% irrigation during the storage root bulking stage, and 85% irrigation across both stages, complemented by full irrigation in other periods. The plants received either humic treatments through foliar spray or soil application, or chitosan foliar applications, with tap water serving as a control. Our findings highlight that the early vine development stage is particularly vulnerable to drought, with a 42.0% decrease in yield observed under such conditions. In normal growth scenarios, foliar application of humic substances significantly improved growth parameters, resulting in a substantial increase in yield and water efficiency by 66.9% and 68.4%, respectively, compared to the control treatment under full irrigation. For sweet potatoes irrigated with 70% water at the storage root bulking stage, ground application of humic substances outperformed both foliar applications of chitosan and humic in terms of yield results. The highest tuber yield and water efficiency were attained by combining chitosan and humic ground applications, regardless of whether 70% irrigation was used at the storage root bulking stage or 85% irrigation during both the early vine development and storage root bulking stages.
Asunto(s)
Quitosano , Ipomoea batatas , Sustancias Húmicas , Agua , Sequías , Estado NutricionalRESUMEN
Drought stress is a worldwide threat to the productivity of crops, especially in arid and semi-arid zones of the world. In the present study, the effect of selenium (Se) seed priming on the yield of quinoa under normal and drought conditions was investigated. A pot trial was executed to enhance the drought tolerance in quinoa by Se seed priming (0, 3, 6, and 9 mg Se L-1). The plants were exposed to water stress at three different growth stages of quinoa, viz. multiple leaf, flowering, and seed filling. It was noticed that drought significantly affected the yield components of quinoa, however, Se priming improved the drought tolerance potential and yield of quinoa by maintaining the plant water status. Se priming significantly increased main panicle length (20.29%), main panicle weight (26.43%), and thousand grain weight (15.41%) as well as the gas exchange parameters (transpiration rate (29.74%), stomatal conductance (35.29%), and photosynthetic rate (28.79%), total phenolics (29.36%), leaf chlorophyll contents (35.97%), water relations (leaf relative water contents (14.55%), osmotic potential (10.32%), water potential (38.35%), and turgor potential (31.37%), and economic yield (35.99%) under drought stress. Moreover, Se priming markedly improved grain quality parameters i.e., phosphorus, potassium, and protein contents by 21.28%, 18.92%, and 15.04%, respectively. The principal component analysis connected the various study scales and showed the ability of physio-biochemical factors to describe yield fluctuations in response to Se seed priming under drought conditions. In conclusion, a drought at the seed-filling stage has a far more deleterious impact among other critical growth stages and seed priming with Se (6 mg L-1) was found more effective in alleviating the detrimental effects of drought on the grain yield of quinoa.
Asunto(s)
Chenopodium quinoa , Selenio , Selenio/farmacología , Sequías , Semillas , Grano ComestibleRESUMEN
Water stress is an important factor that substantially impacts crop production. As a result, there is a need for various strategies that can mitigate these negative effects. One such strategy is the application of potassium humate (Kh) and cobalt (Co), which have been reported to enhance the resistance of crop plants. Therefore, the present experiment was designed to investigate whether the application of Kh and Co could positively affect proline, chlorophyll and mineral elements contents, and antioxidant defense systems which in turn will mitigate the negative impact of water stress under different irrigation strategies. In 2021 and 2022, an open-field experiments were conducted by using a split-plot design. The main plots were divided to represent different irrigation strategies (ST), with additional control of full irrigation requirements (ST1). Four STs were implemented, with ST1, followed by the application of 75%, 50%, and 25% irrigation strategies in ST2, ST3, and ST4 respectively, in the next irrigation, followed by the full requirements, and so on. In the subplots, peanut plants were treated with tap water (Control), Kh at 2 g l-1 and 3 g l-1, Co, Co + Kh 2 g l-1 and Co + Kh 3 g l-1. The yield was negatively affected by the implementation of ST4, despite the increase in proline contents. Furthermore, there was a decrease in relative water content, chlorophyll content, antioxidant enzymes, protein, and mineral nutrient elements. However, the application of Kh or Co showed better improvements in most of the studied parameters. It is worth noting that there was an antagonistic relationship between Co and iron/manganese, and the intensity of this relationship was found to depend on the STs implemented. The highest mineral nutrient accumulation, chlorophyll content, relative water content, protein content, oil content, seed yield, and water productivity were observed when peanut plants were treated with Kh 3 g l-1 + Co under the ST2 water strategy.
Asunto(s)
Antioxidantes , Arachis , Antioxidantes/metabolismo , Arachis/metabolismo , Potasio/metabolismo , Deshidratación , Cobalto , Prolina/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1 , Minerales , Clorofila/metabolismo , Homeostasis , NutrientesRESUMEN
Upper Egypt experiences high temperatures during summer and low temperatures during winter, which significantly impacts the sowing dates of maize in this region. The productivity of maize crops and water use efficiency can be greatly affected by water stress and sowing dates (SDs). Therefore, it is crucial to determine the optimal irrigation level and SDs based on local conditions. To assess the effects, two irrigation levels were employed: (1) control (full irrigation water applied) and (2) 70% of irrigation water. Field experiments were conducted at the National Water Research Center's water studies and research complex station in Toshka. The aim was to evaluate two irrigation levels (full and limited irrigation) across five SDs (early: mid-February and March, normal: mid-June, and late: mid-August and September) in both 2019 and 2020, in order to identify the ideal sowing date (SD) and irrigation level. The normal SD resulted in an increased the growth season length between plant emergence and maturity. Conversely, the late SD reduced the number of days until plant maturity, resulting in higher grain yields and water use efficiency (WUE). Notably, the SD in September, coupled with the 70% irrigation level, yielded the highest productivity and WUE, with a productivity of 7014 kg ha-1 and a WUE of 0. 9 kg m-3. Based on the findings, it is recommended that regions with similar conditions consider cultivating maize seeds in September, adopting a 70% irrigation level, to achieve optimal N uptake, growth traits (plant height, ear length, ear weight, number of rows per ear, and grain index weight), yield, and WUE.
Asunto(s)
Agricultura , Conservación de los Recursos Hídricos , Zea mays , Zea mays/crecimiento & desarrollo , Riego Agrícola , Egipto , Cambio Climático , Ambiente , Estaciones del Año , Tiempo (Meteorología)RESUMEN
Water stress poses a significant challenge for carrot cultivation, leading to decreased yield and inefficient water use efficiency. Therefore, it is crucial to provide plants with suitable supplements that enhance their stress resistance. In this study, we investigated the effectiveness of humic and potassium applications on carrot growth, yield characteristics, root quality, and water use efficiency under varying irrigation levels. A split-split plot experiment was conducted, with two levels of gross water requirements (GWR) (100% and 80%) assigned to the main plots. The subplots were treated with humic acid through foliar application (Hsp) or soil drenching (Hgd). The sub-subplots were further divided to assess the impact of foliar potassium sources (potassium humate, Kh) and mineral applications (potassium sulfate, K2SO4). The results revealed a substantial reduction in carrot yield under limited irrigation, reaching about 32.2% lower than under GWR100%. Therefore, under limited irrigation conditions, the combined application of Hgd and K2SO4 resulted in a significant yield increase of 78.9% compared to the control under GWR80%. Conversely, under GWR100%, the highest average yield was achieved by applying either Hsp and Kh or Hsp and K2SO4, resulting in yields of 35,833 kg ha-1 and 40,183 kg ha-1, respectively. However, the combination of Hgd and Kh negatively affected the yield under both GWR100% and GWR80%. Nonetheless, applying Kh in combination with Hgd under GWR80% led to improved nitrogen, phosphorus, potassium, potassium/sodium ratio, and total sugar concentrations, while reducing sodium content in carrot roots. Based on this study, it is recommended to adopt GWR80% and treat plants with a combination of Hgd and foliar K2SO4. This approach can help plants overcome the negative effects of water stress, improve yield and root quality, and achieve optimal water use efficiency.