Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 647, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943066

RESUMEN

BACKGROUND: At a global scale, the SARS-CoV-2 virus did not remain in its initial genotype for a long period of time, with the first global reports of variants of concern (VOCs) in late 2020. Subsequently, genome sequencing has become an indispensable tool for characterizing the ongoing pandemic, particularly for typing SARS-CoV-2 samples obtained from patients or environmental surveillance. For such SARS-CoV-2 typing, various in vitro and in silico workflows exist, yet to date, no systematic cross-platform validation has been reported. RESULTS: In this work, we present the first comprehensive cross-platform evaluation and validation of in silico SARS-CoV-2 typing workflows. The evaluation relies on a dataset of 54 patient-derived samples sequenced with several different in vitro approaches on all relevant state-of-the-art sequencing platforms. Moreover, we present UnCoVar, a robust, production-grade reproducible SARS-CoV-2 typing workflow that outperforms all other tested approaches in terms of precision and recall. CONCLUSIONS: In many ways, the SARS-CoV-2 pandemic has accelerated the development of techniques and analytical approaches. We believe that this can serve as a blueprint for dealing with future pandemics. Accordingly, UnCoVar is easily generalizable towards other viral pathogens and future pandemics. The fully automated workflow assembles virus genomes from patient samples, identifies existing lineages, and provides high-resolution insights into individual mutations. UnCoVar includes extensive quality control and automatically generates interactive visual reports. UnCoVar is implemented as a Snakemake workflow. The open-source code is available under a BSD 2-clause license at github.com/IKIM-Essen/uncovar.


Asunto(s)
COVID-19 , Genoma Viral , SARS-CoV-2 , Flujo de Trabajo , SARS-CoV-2/genética , Humanos , COVID-19/virología , COVID-19/epidemiología , Programas Informáticos , Reproducibilidad de los Resultados
2.
J Virol ; : e0053424, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899932

RESUMEN

The interplay between host factors and viral components impacts viral replication efficiency profoundly. Members of the cellular heterogeneous nuclear ribonucleoprotein family (hnRNPs) have been extensively studied as HIV-1 host dependency factors, but whether they play a role in innate immunity is currently unknown. This study aimed to identify hnRNPA0 as a type I interferon (IFN)-repressed host factor in HIV-1-infected cells. Knockdown of hnRNPA0, a situation that mirrors conditions under IFN stimulation, increased LTR activity, export of unspliced HIV-1 mRNA, viral particle production, and thus, increased infectivity. Conversely, hnRNPA0 overexpression primarily reduced plasmid-driven and integrated HIV-1 long terminal repeat (LTR) activity, significantly decreasing total viral mRNA and protein levels. In addition, high levels of hnRNPA0 significantly reduced the HIV-1 programmed ribosomal frameshifting efficiency, resulting in a shift in the HIV-1 p55/p15 ratio. The HIV-1 alternative splice site usage remained largely unaffected by altered hnRNPA0 levels suggesting that the synergistic inhibition of the LTR activity and viral mRNA transcription, as well as impaired ribosomal frameshifting efficiency, are critical factors for efficient HIV-1 replication regulated by hnRNPA0. The pleiotropic dose-dependent effects under high or low hnRNPA0 levels were further confirmed in HIV-1-infected Jurkat cells. Finally, our study revealed that hnRNPA0 levels in PBMCs were lower in therapy-naive HIV-1-infected individuals compared to healthy controls. Our findings highlight a significant role for hnRNPA0 in HIV-1 replication and suggest that its IFN-I-regulated expression levels are critical for viral fitness allowing replication in an antiviral environment.IMPORTANCERNA-binding proteins, in particular, heterogeneous nuclear ribonucleoproteins (hnRNPs), have been extensively studied. Some act as host dependency factors for HIV-1 since they are involved in multiple cellular gene expression processes. Our study revealed hnRNPA0 as an IFN-regulated host factor, that is differently expressed after IFN-I treatment in HIV-1 target cells and lower expressed in therapy-naïve HIV-1-infected individuals. Our findings demonstrate the significant pleiotropic role of hnRNPA0 in viral replication: In high concentrations, hnRNPA0 limits viral replication by negatively regulating Tat-LTR transcription, retaining unspliced mRNA in the nucleus, and significantly impairing programmed ribosomal frameshifting. Low hnRNPA0 levels as observed in IFN-treated THP-1 cells, particularly facilitate HIV LTR activity and unspliced mRNA export, suggesting a role in innate immunity in favor of HIV replication. Understanding the mode of action between hnRNPA0 and HIV-1 gene expression might help to identify novel therapeutically strategies against HIV-1 and other viruses.

3.
Viruses ; 16(4)2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38675888

RESUMEN

The pandemic caused by SARS-CoV-2 is still a major health problem. Newly emerging variants and long-COVID-19 represent a challenge for the global health system. In particular, individuals in developing countries with insufficient health care need easily accessible, affordable and effective treatments of COVID-19. Previous studies have demonstrated the efficacy of functional inhibitors of acid sphingomyelinase against infections with various viruses, including early variants of SARS-CoV-2. This work investigated whether the acid sphingomyelinase inhibitors fluoxetine and sertraline, usually used as antidepressant molecules in clinical practice, can inhibit the replication of the former and recently emerged SARS-CoV-2 variants in vitro. Fluoxetine and sertraline potently inhibited the infection with pseudotyped virus-like particles and SARS-CoV-2 variants D614G, alpha, delta, omicron BA.1 and omicron BA.5. These results highlight fluoxetine and sertraline as priority candidates for large-scale phase 3 clinical trials at different stages of SARS-CoV-2 infections, either alone or in combination with other medications.


Asunto(s)
Antivirales , COVID-19 , Fluoxetina , SARS-CoV-2 , Sertralina , Replicación Viral , SARS-CoV-2/efectos de los fármacos , Sertralina/farmacología , Fluoxetina/farmacología , Replicación Viral/efectos de los fármacos , Humanos , Antivirales/farmacología , Chlorocebus aethiops , Células Vero , COVID-19/virología , Animales , Tratamiento Farmacológico de COVID-19
4.
Liver Int ; 44(3): 637-643, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291853

RESUMEN

Hepatitis E virus (HEV) is prevalent worldwide and can cause persistent infection with severe morbidity. Antiviral treatment approaches can lead to the emergence of viral variants encoding escape mutations that may impede viral clearance. The frequency of these variants remains unknown in the human population as well as environment due to limited comprehensive data on HEV diversity. In this study, we investigated the HEV prevalence and diversity of circulating variants in environmental samples, that is, wastewater and rivers from North-Rhine Westphalia, Germany. HEV prevalence could be determined with 73% of samples tested positive for viral RNA via qRT-PCR. Using high-throughput sequencing, we were able to assess the overall genetic diversity in these samples and identified the presence of clinically relevant variants associated with drug resistance. In summary, monitoring variants from environmental samples could provide valuable insights into estimating HEV prevalence and identifying circulating variants that can impact treatment outcome.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Humanos , Virus de la Hepatitis E/genética , Aguas Residuales , Hepatitis E/diagnóstico , Hepatitis E/tratamiento farmacológico , Hepatitis E/epidemiología , Filogenia , Prevalencia , ARN Viral/genética
5.
PLoS Pathog ; 19(10): e1011725, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37883584

RESUMEN

Antiretroviral therapy (ART) transformed HIV from a life-threatening disease to a chronic condition. However, eliminating the virus remains an elusive therapy goal. For several decades, Friend virus (FV) infection serves as a murine model to study retrovirus immunity. Similar to HIV, FV persists at low levels in lymph nodes B cell follicles avoiding elimination by immune cells. Such immune-privileged reservoirs exclude cytotoxic T cells from entry. However, CXCR5+ T cells are permitted to traffic through germinal centers. This marker is predominantly expressed by CD4+ follicular helper T cells (Tfh). Therefore, we explored immunotherapy to induce cytotoxic Tfh, which are rarely found under physiological conditions. The TNF receptor family member CD137 was first identified as a promising target for cancer immunotherapy. We demonstrated that FV-infected mice treatment with αCD137 antibody resulted in an induction of the cytotoxic program in Tfh. The therapy significantly increased numbers of cytotoxic Tfh within B cell follicles and contributed to viral load reduction. Moreover, αCD137 antibody combined with ART delayed virus rebound upon treatment termination without disturbing the lymph node architecture or antibody responses. Thus, αCD137 antibody therapy might be a novel strategy to target the retroviral reservoir and an interesting approach for HIV cure research.


Asunto(s)
Infecciones por VIH , Células T Auxiliares Foliculares , Animales , Ratones , Retroviridae , Linfocitos B , Inmunoterapia , Linfocitos T Colaboradores-Inductores
6.
Vaccines (Basel) ; 11(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37515072

RESUMEN

The COVID-19 mRNA vaccine is the first mRNA vaccine approved for human administration by both the U.S. Food and Drug Administration and the European Medicines Agency. Studies have shown that the immune response and the decay of immunity after vaccination with the COVID-19 vaccines are variable within a population. Host genetic factors probably contribute to this variability. In this study, we investigated the effect of the single-nucleotide polymorphisms rs12252 and rs34481144 in the interferon-induced transmembrane protein (IFITM) 3 gene on the humoral immune response after vaccination against COVID-19 with mRNA vaccines. Blood samples were collected from 1893 healthcare workers and medical students at multiple time points post-vaccination and antibody titers against the SARS-CoV-2 S1 protein receptor binding domain were determined at all time points. All participants were genotyped for the rs34481144 and rs12252 polymorphisms in the IFITM3 gene. After the second and third vaccinations, antibody titer levels increased at one month and decreased at six months (p < 0.0001) and were higher after the booster vaccination than after the basic immunization (p < 0.0001). Participants vaccinated with mRNA-1273 had a higher humoral immune response than participants vaccinated with BNT162b2. rs12252 had no effect on the antibody response. In contrast, carriers of the GG genotype in rs34481144 vaccinated with BNT162b2 had a lower humoral immune response compared to A allele carriers, which reached statistical significance on the day of the second vaccination (p = 0.03) and one month after the second vaccination (p = 0.04). Further studies on the influence of rs12252 and rs34481144 on the humoral immune response after vaccination against COVID-19 are needed.

7.
Antiviral Res ; 217: 105690, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37517633

RESUMEN

Hepatitis E virus (HEV) usually causes a self-limiting disease, but especially immunocompromised individuals are at risk to develop a chronic and severe course of infection. Janus kinase (JAK) inhibitors (JAKi) are a novel drug class for the treatment of autoimmune inflammatory rheumatic disease (AIRD). As JAKs play a key role in innate immunity, viral infections and reactivations are frequently reported during JAKi treatment in AIRD patients. The aim of this study was to characterize the influence of JAKis on HEV replication. To this end, we evaluated liver enzymes of an AIRD patient under JAKi therapy with hepatitis E. Further, experiments with HEV (Kernow-C1 p6) were performed by infection of primary human hepatocytes (PHHs) followed by immunofluorescence staining of viral markers and transcriptomic analysis. Infection experiments in PHHs displayed an up to 50-fold increase of progeny virus production during JAKi treatment and transcriptomic analysis revealed induction of antiviral programs during infection. Upregulation of interferon-stimulated genes (ISG) was perturbed in the presence of JAKis, concomitant with elevated HEV RNA levels. The obtained results suggest that therapeutic JAK inhibition increases HEV replication by modulating the HEV-triggered immune response. Therefore, JAKi treatment and the occurrence of elevated liver enzymes requires a monitoring of potential HEV infections.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Humanos , Virus de la Hepatitis E/genética , Quinasas Janus , Interferones/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Replicación Viral
8.
Viruses ; 15(5)2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37243248

RESUMEN

Acute SARS-CoV-2 infection has been associated with false-positive HIV screening tests. The underlying mechanism is unclear, and for clinical cases, evidence beyond a temporal connection is missing. However, several experimental studies point toward SARS-CoV-2 spike/HIV-1 envelope (Env) cross-reactive antibodies (Abs) as a cause. Here, we present the first case of an individual with convalescent SARS-CoV-2 infection testing false positive in both an HIV screening and confirmatory test. Longitudinal sampling showed that the phenomenon was temporary but lasted for at least 3 months before waning. After excluding a multitude of common determinants for assay interference, we further show by antibody depletion studies that SARS-CoV-2-spike-specific Abs did not cross-react with HIV-1 gp120 in the patient sample. No additional case of HIV test interference was identified in a cohort of 66 individuals who presented to a post-COVID-19 outpatient clinic. We conclude the SARS-CoV-2-associated HIV test interference to be a temporary process capable of disturbing both screening and confirmatory assays. The assay interference is short-lived and/or rare but should be considered by physicians as a possible explanation for unexpected HIV diagnostic results in patients with a recent SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Anticuerpos Antivirales , Infecciones por VIH/complicaciones , Infecciones por VIH/diagnóstico , Pruebas Diagnósticas de Rutina , Glicoproteína de la Espiga del Coronavirus , Prueba de COVID-19
9.
Nat Commun ; 14(1): 2835, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208323

RESUMEN

Determining SARS-CoV-2 immunity is critical to assess COVID-19 risk and the need for prevention and mitigation strategies. We measured SARS-CoV-2 Spike/Nucleocapsid seroprevalence and serum neutralizing activity against Wu01, BA.4/5 and BQ.1.1 in a convenience sample of 1,411 patients receiving medical treatment in the emergency departments of five university hospitals in North Rhine-Westphalia, Germany, in August/September 2022. 62% reported underlying medical conditions and 67.7% were vaccinated according to German COVID-19 vaccination recommendations (13.9% fully vaccinated, 54.3% one booster, 23.4% two boosters). We detected Spike-IgG in 95.6%, Nucleocapsid-IgG in 24.0%, and neutralization against Wu01, BA.4/5 and BQ.1.1 in 94.4%, 85.0%, and 73.8% of participants, respectively. Neutralization against BA.4/5 and BQ.1.1 was 5.6- and 23.4-fold lower compared to Wu01. Accuracy of S-IgG detection for determination of neutralizing activity against BQ.1.1 was reduced substantially. We explored previous vaccinations and infections as correlates of BQ.1.1 neutralization using multivariable and Bayesian network analyses. Given a rather moderate adherence to COVID-19 vaccination recommendations, this analysis highlights the need to improve vaccine-uptake to reduce the COVID-19 risk of immune evasive variants. The study was registered as clinical trial (DRKS00029414).


Asunto(s)
COVID-19 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Teorema de Bayes , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunidad Humoral , Inmunoglobulina G , SARS-CoV-2 , Estudios Seroepidemiológicos , Vacunación
10.
Heliyon ; 9(1): e12746, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36597483

RESUMEN

Knowledge regarding the sustainability of immune responses after COVID-19 vaccination is important, e.g., to decide whom and when to booster. Thus, we analyzed antibody titers in firefighters six months after vaccination with the mRNA-based vaccine Comirnaty. SARS-CoV-2 spike-binding antibodies (bAb) were quantified and compared to peak responses determined in healthcare workers (HCW). For the firefighters, neutralizing antibodies (nAb) were also analyzed. Six months after the second vaccine dose, all analyzed firefighters had detectable bAb, and 91% exhibited nAb titers above 1:16. However, actual titers six months after vaccination were over 12-fold lower than in the HCW control group four weeks after vaccination. bAb and nAb responses showed a significant correlation, and age correlated inversely with antibody responses. Unexpectedly, participants with a body mass index over 25 had higher neutralization titers after six months. All participants with very low neutralization titers were offered booster vaccination. The booster vaccination improved the extent and sustainability of antibody responses.

11.
Front Immunol ; 13: 935800, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36458014

RESUMEN

Efficient HIV-1 replication depends on balanced levels of host cell components including cellular splicing factors as the family of serine/arginine-rich splicing factors (SRSF, 1-10). Type I interferons (IFN-I) play a crucial role in the innate immunity against HIV-1 by inducing the expression of IFN-stimulated genes (ISGs) including potent host restriction factors. The less well known IFN-repressed genes (IRepGs) might additionally affect viral replication by downregulating host dependency factors that are essential for the viral life cycle; however, so far, the knowledge about IRepGs involved in HIV-1 infection is very limited. In this work, we could demonstrate that HIV-1 infection and the associated ISG induction correlated with low SRSF1 levels in intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs) during acute and chronic HIV-1 infection. In HIV-1-susceptible cell lines as well as primary monocyte-derived macrophages (MDMs), expression levels of SRSF1 were transiently repressed upon treatment with specific IFNα subtypes in vitro. Mechanically, 4sU labeling of newly transcribed mRNAs revealed that IFN-mediated SRSF1 repression is regulated on early RNA level. SRSF1 knockdown led to an increase in total viral RNA levels, but the relative proportion of the HIV-1 viral infectivity factor (Vif) coding transcripts, which is essential to counteract APOBEC3G-mediated host restriction, was significantly reduced. In the presence of high APOBEC3G levels, however, increased LTR activity upon SRSF1 knockdown facilitated the overall replication, despite decreased vif mRNA levels. In contrast, SRSF1 overexpression significantly impaired HIV-1 post-integration steps including LTR transcription, alternative splice site usage, and virus particle production. Since balanced SRSF1 levels are crucial for efficient viral replication, our data highlight the so far undescribed role of SRSF1 acting as an IFN-modulated cellular dependency factor decisively regulating HIV-1 post-integration steps.


Asunto(s)
Seropositividad para VIH , VIH-1 , Interferón Tipo I , Humanos , Leucocitos Mononucleares , Anticuerpos , ARN Mensajero , Factores de Empalme Serina-Arginina/genética
12.
Front Genet ; 13: 932043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105097

RESUMEN

Background: Immune responses following vaccination against COVID-19 with different vaccines and the waning of immunity vary within the population. Genetic host factors are likely to contribute to this variability. However, to the best of our knowledge, no study on G protein polymorphisms and vaccination responses against COVID-19 has been published so far. Methods: Antibodies against the SARS-CoV-2 spike protein and T-cell responses against a peptide pool of SARS-CoV-2 S1 proteins were measured 1 and 6 months after the second vaccination with mRNA-1273 in the main study group of 204 participants. Additionally, antibodies against the SARS-CoV-2 spike protein were measured in a group of 597 participants 1 month after the second vaccination with mRNA-1273. Genotypes of GNB3 c.825C>T were determined in all participants. Results: The median antibody titer against the SARS-CoV-2 spike protein and median values of spots increment in the SARS-CoV-2 IFN-γ ELISpot assay against the S1-peptide pool were significantly decreased from months 1 to 6 (p < 0.0001). Genotypes of GNB3 c.825C>T had no influence on the humoral immune response. At month 1, CC genotype carriers had significantly increased T-cell responses compared to CT (p = 0.005) or TT (p = 0.02) genotypes. CC genotype carriers had an almost 6-fold increased probability compared to TT genotype carriers and an almost 3-fold increased probability compared to T-allele carriers to mount a SARS-CoV-2-specific T-cell response above the median value. Conclusion: CC genotype carriers of the GNB3 c.825C>T polymorphism have an increased T-cell immune response to SARS-CoV-2, which may indicate better T-cell-mediated protection against COVID-19 after vaccination with mRNA-1273.

13.
Front Genet ; 13: 960731, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017493

RESUMEN

Background and aims: Albeit several factors which influence the outcome of corona virus disease (COVID-19) are already known, genetic markers which may predict the outcome of the disease in hospitalized patients are still very sparse. Thus, in this study, we aimed to analyze whether the single-nucleotide polymorphism (SNP) rs5443 in the gene GNB3, which was associated with higher T cell responses in previous studies, might be a suitable biomarker to predict T cell responses and the outcome of COVID-19 in a comprehensive German cohort. Methods: We analyzed the influence of demographics, pre-existing disorders, laboratory parameters at the time of hospitalization, and GNB3 rs5443 genotype in a comprehensive cohort (N = 1570) on the outcome of COVID-19. In a sub cohort, we analyzed SARS-CoV-2-specific T cell responses and associated GNB3 rs5443 genotypes. We investigated the influence of all factors on COVID-19 fatality in multivariable analysis. Results: We found a younger patient age, normotension or absence of diabetes mellitus or cardiovascular diseases, normal blood cell counts, and low inflammatory markers at hospital admission were protective factors against fatal course of disease. In addition, the rs5443 TT genotype was significantly associated with protection against COVID-19 fatality (OR: 0.60, 95% CI: 0.40-0.92, p = 0.02). We also observed significantly increased SARS-CoV-2-specific T cell responses in rs5443 TT genotype carriers (p = 0.01). Although we observed a significant association of the factors described previously in univariate analysis, only a younger age of the patients, normal blood cell counts, and the GNB3 rs5443 TT genotype remained independent predictors against COVID-19 fatality in multivariable analysis. Conclusion: Immutable predictors for COVID-19 fatality are relatively rare. In this study we could show that the TT genotype of the SNP rs5443 in the gene GNB3 is associated with protection against COVID-19 fatality. It was as well correlated to higher SARS-CoV-2-specific T cell responses, which could result in a milder course of disease in those patients. Based on those observations we hereby provide a further prognostic biomarker, which might be used in routine diagnostics as a predictive factor for COVID-19 mortality already upon hospitalization.

14.
Front Immunol ; 13: 907343, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812411

RESUMEN

Background: Despite the high level of protection against severe COVID-19 provided by the currently available vaccines some breakthrough infections occur. Until now, there is no information whether a potential risk of a breakthrough infection can be inferred from the level of antibodies after booster vaccination. Methods: Levels of binding antibodies and neutralization capacity after the first, one and six month after the second, and one month after the third (booster) vaccination against COVID-19 were measured in serum samples from 1391 healthcare workers at the University Hospital Essen. Demographics, vaccination scheme, pre-infection antibody titers and neutralization capacity were compared between individuals with and without breakthrough infections. Results: The risk of developing an Omicron breakthrough infection was independent of vaccination scheme, sex, body mass index, smoking status or pre-existing conditions. In participants with low pre-infection anti-spike antibodies (≤ 2641.0 BAU/ml) and weaker neutralization capacity (≤ 65.9%) against Omicron one month after the booster vaccination the risk for developing an Omicron infection was 10-fold increased (P = 0.001; 95% confidence interval, 2.36 - 47.55). Conclusion: Routine testing of anti-SARS-CoV-2 IgG antibodies and surrogate virus neutralization can quantify vaccine-induced humoral immune response and may help to identify subjects who are at risk for a breakthrough infection. The establishment of thresholds for SARS-CoV-2 IgG antibody levels identifying "non"-, "low" and "high"-responders may be used as an indication for re-vaccination.


Asunto(s)
Formación de Anticuerpos , COVID-19 , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Inmunización Secundaria , SARS-CoV-2
15.
J Immunol ; 209(3): 535-547, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35851540

RESUMEN

Upon recognition of aberrantly located DNA, the innate immune sensor cyclic GMP-AMP synthase (cGAS) activates stimulator of IFN genes (STING)/IFN regulatory factor (IRF)3-driven antiviral responses. In this study, we characterized the ability of a specific variant of the human cGAS-encoding gene MB21D1, rs610913, to alter cGAS-mediated DNA sensing and viral infection. rs610913 is a frequent G>T polymorphism resulting in a P261H exchange in the cGAS protein. Data from the International Collaboration for the Genomics of HIV suggested that rs610913 nominally associates with HIV-1 acquisition in vivo. Molecular modeling of cGAS(P261H) hinted toward the possibility for an additional binding site for a potential cellular cofactor in cGAS dimers. However, cGAS(wild-type [WT]) or cGAS(P261H)-reconstituted THP-1 cGAS knockout cells shared steady-state expression of IFN-stimulated genes, as opposed to cells expressing the enzymatically inactive cGAS(G212A/S213A). Accordingly, cGAS(WT) and cGAS(P261H) cells were less susceptible to lentiviral transduction and infection with HIV-1, HSV-1, and Chikungunya virus as compared with cGAS knockout or cGAS(G212A/S213A) cells. Upon DNA challenge, innate immune activation appeared to be mildly reduced upon expression of cGAS(P261H) compared with cGAS(WT). Finally, DNA challenge of PBMCs from donors homozygously expressing rs610913 provoked a trend toward a slightly reduced type I IFN response as compared with PBMCs from GG donors. Taken together, the steady-state activity of cGAS maintains a baseline antiviral state rendering cells more refractory to IFN-stimulated gene-sensitive viral infections. rs610913 failed to grossly differ phenotypically from the WT gene, suggesting that cGAS(P261H) and WT cGAS share a similar ability to sense viral infections in vivo.


Asunto(s)
Inmunidad Innata , Virosis , Humanos , ADN Viral/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Virosis/genética , Virosis/inmunología , Virosis/prevención & control
16.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35131898

RESUMEN

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Interferón-alfa/farmacología , SARS-CoV-2/efectos de los fármacos , Transcriptoma , Replicación Viral/efectos de los fármacos , Animales , COVID-19/inmunología , COVID-19/virología , Chlorocebus aethiops , Clonación Molecular , Modelos Animales de Enfermedad , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Interferón-alfa/genética , Interferón-alfa/inmunología , Ratones , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/farmacología , Proteínas Recombinantes/clasificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Transducción de Señal , Células Vero
17.
Viruses ; 13(10)2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34696344

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). The availability of effective and well-tolerated antiviral drugs for the treatment of COVID-19 patients is still very limited. Traditional herbal medicines elicit antiviral activity against various viruses and might therefore represent a promising option for the complementary treatment of COVID-19 patients. The application of turmeric root in herbal medicine has a very long history. Its bioactive ingredient curcumin shows a broad-spectrum antimicrobial activity. In the present study, we investigated the antiviral activity of aqueous turmeric root extract, the dissolved content of a curcumin-containing nutritional supplement capsule, and pure curcumin against SARS-CoV-2. Turmeric root extract, dissolved turmeric capsule content, and pure curcumin effectively neutralized SARS-CoV-2 at subtoxic concentrations in Vero E6 and human Calu-3 cells. Furthermore, curcumin treatment significantly reduced SARS-CoV-2 RNA levels in cell culture supernatants. Our data uncover curcumin as a promising compound for complementary COVID-19 treatment. Curcumin concentrations contained in turmeric root or capsules used as nutritional supplements completely neutralized SARS-CoV-2 in vitro. Our data argue in favor of appropriate and carefully monitored clinical studies that vigorously test the effectiveness of complementary treatment of COVID-19 patients with curcumin-containing products.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Curcumina/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/uso terapéutico , Línea Celular , Chlorocebus aethiops , Curcuma/metabolismo , Curcumina/metabolismo , Suplementos Dietéticos , Humanos , Medicina Tradicional/métodos , Extractos Vegetales/metabolismo , Extractos Vegetales/uso terapéutico , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Células Vero
18.
iScience ; 24(10): 103194, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34608451

RESUMEN

The COVID-19 pandemic poses enormous challenges to global healthcare sectors. To prevent the overburden of medical systems, it is crucial to distinguish individuals approaching the most infectious early phase from those in the declining non-infectious phase. However, a large fraction of transmission events occur during pre- or asymptomatic phases. Especially in the absence of symptoms, it is difficult to distinguish prodromal from late phases of infection just by RT-PCR since both phases are characterized by low viral loads and corresponding high Ct values (>30). We evaluated a new rapid test detecting IgG antibodies recognizing SARS-CoV-2 nucleocapsid protein using two commercial antibody assays and an in-house neutralization test before determining suitability for testing clinical swab material. Our analyses revealed the combination of the well-known RT-PCR and the new rapid antibody test using one single clinical nasopharyngeal swab specimen as a fast, cost-effective, and reliable way to discriminate prodromal from subsiding phases of COVID-19.

19.
PLoS One ; 16(6): e0252304, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34077485

RESUMEN

BACKGROUND: Torque teno virus (TTV) is a ubiquitous non-pathogenic virus, which is suppressed in immunological healthy individuals but replicates in immune compromised patients. Thus, TTV load is a suitable biomarker for monitoring the immunosuppression also in lung transplant recipients. Since little is known about the changes of TTV load in lung cancer patients, we analyzed TTV plasma DNA levels in lung cancer patients and its perioperative changes after lung cancer surgery. MATERIAL AND METHODS: Patients with lung cancer and non-malignant nodules as control group were included prospectively. TTV DNA levels were measured by quantiative PCR using DNA isolated from patients plasma and correlated with routine circulating biomarkers and clinicopathological variables. RESULTS: 47 patients (early stage lung cancer n = 30, stage IV lung cancer n = 10, non-malignant nodules n = 7) were included. TTV DNA levels were not detected in seven patients (15%). There was no significant difference between the stage IV cases and the preoperative TTV plasma DNA levels in patients with early stage lung cancer or non-malignant nodules (p = 0.627). While gender, tumor stage and tumor histology showed no correlation with TTV load patients below 65 years of age had a significantly lower TTV load then older patients (p = 0.022). Regarding routine blood based biomarkers, LDH activity was significantly higher in patients with stage IV lung cancer (p = 0.043), however, TTV load showed no correlation with LDH activity, albumin, hemoglobin, CRP or WBC. Comparing the preoperative, postoperative and discharge day TTV load, no unequivocal pattern in the kinetics were. CONCLUSION: Our study suggest that lung cancer has no stage dependent impact on TTV plasma DNA levels and confirms that elderly patients have a significantly higher TTV load. Furthermore, we found no uniform perioperative changes during early stage lung cancer resection on plasma TTV DNA levels.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Carcinoma de Células Escamosas/patología , Infecciones por Virus ADN/complicaciones , Neoplasias Pulmonares/patología , Torque teno virus/aislamiento & purificación , Carga Viral , Adenocarcinoma del Pulmón/cirugía , Adenocarcinoma del Pulmón/virología , Factores de Edad , Anciano , Carcinoma de Células Escamosas/cirugía , Carcinoma de Células Escamosas/virología , Estudios de Casos y Controles , Infecciones por Virus ADN/virología , ADN Viral/análisis , ADN Viral/genética , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/virología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Estudios Prospectivos
20.
Front Genet ; 12: 667231, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968142

RESUMEN

The transmembrane serine protease 2 (TMPRSS2) is the major host protease that enables entry of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) into host cells by spike (S) protein priming. Single nucleotide polymorphisms (SNPs) in the gene TMPRSS2 have been associated with susceptibility to and severity of H1N1 or H1N9 influenza A virus infections. Functional variants may influence SARS-CoV-2 infection risk and severity of Coronavirus disease 2019 (COVID-19) as well. Therefore, we analyzed the role of SNPs in the gene TMPRSS2 in a German case-control study. We performed genotyping of the SNPs rs2070788, rs383510, and rs12329760 in the gene TMPRSS2 in 239 SARS-CoV-2-positive and 253 SARS-CoV-2-negative patients. We analyzed the association of the SNPs with susceptibility to SARS-CoV-2 infection and severity of COVID-19. SARS-CoV-2-positive and SARS-CoV-2-negative patients did not differ regarding their demographics. The CC genotype of TMPRSS2 rs383510 was associated with a 1.73-fold increased SARS-CoV-2 infection risk, but was not correlated to severity of COVID-19. Neither TMPRSS2 rs2070788 nor rs12329760 polymorphisms were related to SARS-CoV-2 infection risk or severity of COVID-19. In a multivariable analysis (MVA), the rs383510 CC genotype remained an independent predictor for a 2-fold increased SARS-CoV-2 infection risk. In summary, our report appears to be the first showing that the intron variant rs383510 in the gene TMPRSS2 is associated with an increased risk to SARS-CoV-2 infection in a German cohort.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...