Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998683

RESUMEN

Neurodegenerative disorders cause most physical and mental disabilities, and therefore require effective treatment. The blood-brain barrier (BBB) prevents drug molecules from crossing from the blood to the brain, making brain drug delivery difficult. Implantable devices could provide sustained and regulated medication to solve this problem. Two electrolytes (0.3 M oxalic acid and 0.3 M sulphuric acid) were used to anodise Al2O3 nanoporous membranes, followed by a third anodisation in concentrated H2SO4 to separate the through-hole membranes from the aluminium substrate. FTIR, AFM, and SEM/EDX were used to characterise the membranes' structure and morphology. The effects of the anodisation time and electrolyte type on the AAO layer pore density, diameter, interpore distance, and thickness were examined. As a model drug for neurodegenerative disorders, donepezil hydrochloride (DHC) was loaded onto thin alumina nanoporous membranes. The DHC release profiles were characterised at two concentrations using a UV-Vis spectrophotometer. Oxalic acid membranes demonstrated an average pore diameter of 39.6-32.5 nm, which was two times larger than sulphuric acid membranes (22.6-19.7 nm). After increasing the anodisation time from 3 to 5 h, all of the membranes showed a reduction in pore diameter that was stable regardless of the electrolyte type or period. Drug release from oxalic acid-fabricated membranes was controlled and sustained for over 2 weeks. Thus, nanoporous membranes as implantable drug delivery systems could improve neurodegenerative disease treatment.

2.
Asian Pac J Cancer Prev ; 25(5): 1589-1598, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38809630

RESUMEN

INTRODUCTION: Diagnosis of the majority of hepatocellular carcinoma (HCC) patients occurs at intermediate to advanced stages, with a few curative therapeutic options being available. It is therefore strongly urgent to discover additional adjuvant therapy for this lethal malignancy. This study aimed to assess the effectiveness of curcumin (C), piperine (P) and taurine (T) combination as adjuvant agents on serum levels of IFN-γ, immunophenotypic and molecular characterization of mononuclear leukocytes (MNLs) in HCC patients treated with Transarterial chemoembolization (TACE). PATIENTS AND METHODS: Serum and MNLs were collected from 20 TACE-treated HCC patients before (baseline-control samples) and after treatment with 5 g curcumin capsules , 10 mg piperine and 0.5 mg taurine taken daily for three consecutive months. Immunophenotypic and molecular characterization of MNLs were determined by flow cytometry and quantitative real time PCR, respectively. In addition, serum IFN-γ level was quantified by ELISA. RESULTS: After receiving treatment with CPT combination, there was a highly significant increase in IFN- γ levels in the sera of patients when compared to basal line control samples. Additionally, the group receiving combined therapy demonstrated a downregulation in the expression levels of PD-1, in MNLs as compared to controls. MNLs' immunophenotyping revealed a significant decline in CD4+CD25+cells (regulatory T lymphocytes). Furthermore, clinicopathological characteristics revealed a highly significant impact of CPT combination on aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and alpha feto protein (AFP) levels. CONCLUSION: This study introduces a promising adjuvant CPT combined treatment as natural agents to enhance the management of HCC patients who are candidates to TACE treatment.


Asunto(s)
Alcaloides , Protocolos de Quimioterapia Combinada Antineoplásica , Benzodioxoles , Carcinoma Hepatocelular , Quimioembolización Terapéutica , Curcumina , Neoplasias Hepáticas , Piperidinas , Alcamidas Poliinsaturadas , Taurina , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Alcaloides/administración & dosificación , Alcaloides/uso terapéutico , Piperidinas/administración & dosificación , Piperidinas/uso terapéutico , Quimioembolización Terapéutica/métodos , Proyectos Piloto , Masculino , Curcumina/uso terapéutico , Curcumina/administración & dosificación , Femenino , Alcamidas Poliinsaturadas/farmacología , Alcamidas Poliinsaturadas/administración & dosificación , Alcamidas Poliinsaturadas/uso terapéutico , Benzodioxoles/uso terapéutico , Benzodioxoles/administración & dosificación , Persona de Mediana Edad , Taurina/administración & dosificación , Taurina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Interferón gamma/metabolismo , Pronóstico , Estudios de Seguimiento , Leucocitos Mononucleares/metabolismo , Adulto , Anciano
3.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373066

RESUMEN

In the light of anticancer drug discovery and development, a new series of cyanochalcones incorporating indole moiety (5a-g) were efficiently synthesized and characterized by different spectral analysis. MTT assay was used to evaluate the antiproliferative activity of the synthesized compounds towards different cancer cells (Hela, MDA-MB-231, A375, and A549) in parallel with normal cells (HSF). Trimethoxy and diethoxy-containing derivatives (5d and 5e) displayed the most selective cytotoxic activities against cervical Hela cells with IC50 values of 8.29 and 11.82 µM, respectively, with great safety pattern toward normal HSF cells (Selectivity index: 21.3 and 13.9, respectively). Therefore, 5d and 5e were chosen to study their effects on apoptosis, cell cycle arrest, and migration of Hela cells using flow cytometric analysis and wound healing assay. They induced apoptosis and cell cycle arrest at the S phase and impaired migration of HeLa cells. Regarding their effects on the expression profile of crucial genes related to the potential anticancer activities, 5d and 5e remarkably upregulated caspase 3 and Beclin1 and downregulated cyclin A1, CDK2, CDH2, MMP9, and HIF1A using qRT-PCR and ELISA techniques. UV-Vis spectral measurement demonstrated the ability of 5d and 5e to bind CT-DNA efficiently with Kb values of 3.7 × 105 and 1 × 105 M-1, respectively. Moreover, in silico molecular docking was performed to assess the binding affinities of the compounds toward the active sites of Bcl2, CDK2, and DNA. Therefore, cyanochalcones 5d and 5e might be promising anticancer agents and could offer a scientific basis for intensive research into cancer chemotherapy.Communicated by Ramaswamy H. Sarma.


A novel series of cyanochalcones incorporating indole moiety (5a­g) were designed and synthesized.Cytotoxic activities of the designed compounds were evaluated in vitro against different human cancer cell lines (Hela, MDA-MB-231, A375, and A549) in parallel with human normal cells (HSF).5d and 5e stimulated apoptosis (through deregulating Bcl2 and upregulating Cas3), cell cycle arrest at the S phase (by suppressing cyclin A and CDK2), and inhibited migration (through downregulating CDH2 and MMP9) of Hela cells.5d and 5e demonstrated good DNA binding affinities.Molecular docking was carried out to confirm the binding abilities of 5d and 5e toward Bcl2, CDK2, and DNA.

4.
Lasers Med Sci ; 39(1): 45, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38253944

RESUMEN

Chlorophyll (Chl) is a promising natural photosensitizer (PS) in photodynamic treatment (PDT). Mesoporous silica nanoparticles (MSNs) were chosen to increase the effectiveness of PDT. This study aimed to evaluate the synergistic efficacy of chlorophyll-loaded mesoporous silica nanoparticles (Chl-MSNs) with photodynamic therapy (PDT) and to investigate their potential toxicity in HepG2, MDA-MB-231, and HSF cell lines. Chl-MSNs were prepared via the physical adsorption method. TEM, DLS, and zeta potential examined morphology, size, and surface characteristics. MSNs and Chl-MSNs were characterized using the same techniques. HPLC was used to assess the encapsulation efficiency. At pH 7.4, an in vitro release experiment of Chl-MSNs was performed. Chl, MSNs, and Chl-MSNs were applied to the three cell lines at different concentrations and subjected to red (650 nm) and blue (450-500 nm) lasers. MSNs and Chl-MSNs' sizes were 90.338 ± 38.49 nm and 123.84 ± 15.67 nm, respectively, as obtained by TEM; the hydrodynamic diameter for MSNs (93.69 ± 20.53 nm) and Chl-MSNs (212.95 ± 19.76 nm); and their zeta potential values are - 16.7 ± 2.19 mV and - 18.84 ± 1.40 mV. The encapsulation efficiency of Chl-MSNs was 70%. Chl-MSNs displayed no toxicity in dark conditions but showed excellent photostability under blue and red light exposure. Furthermore, using Chl over Chl-MSNs has a higher PDT efficiency than the tested cell lines. Chl-MSNs have the potential to be an effective delivery system. PDT proved to be an essential technique for cancer treatment. Blue laser is recommended over red laser with Chl and MSNs for destroying cancer cells.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Línea Celular , Clorofila/farmacología , Neoplasias/tratamiento farmacológico , Dióxido de Silicio
5.
Sci Rep ; 13(1): 9613, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311848

RESUMEN

Alzheimer's disease (AD) is one of the most common causes of dementia. Several drugs are used to improve the symptoms, but do not stop AD progression. There are more promising treatments that may have a significant role in AD diagnosis and treatment such as miRNAs and stem cells. The present study aims to develop a new approach for AD treatment by mesenchymal stem cells (MSCs) and/or acitretin with special reference to inflammatory signaling pathway as NF-kB and its regulator miRNAs in AD-like rat model. Fourty-five male albino rats were allotted for the present study. The experimental periods were divided into induction, withdrawal, and therapeutic phases. Expression levels of miR-146a, miR-155, necrotic, growth and inflammatory genes were assessed using RT-qPCR. Histopathological examination of brain tissues was performed in different rat groups. The normal physiological, molecular, and histopathological levels were restored after treatment with MSCs and/or acitretin. The present study demonstrates that the miR-146a and miR-155 might be used as promising biomarkers for AD. MSCs and/or acitretin proved their therapeutic potential in restoring the expression levels of targeted miRNAs and their related genes concerning NF-kB signaling pathway.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Masculino , Animales , Ratas , Acitretina/farmacología , Acitretina/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , FN-kappa B , Células Madre , MicroARNs/genética , Transducción de Señal
6.
J Alzheimers Dis ; 94(s1): S203-S225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37212107

RESUMEN

Alzheimer's disease (AD) is a cumulative progressive neurodegenerative disease characterized mainly by impairment in cognitive functions accompanied by memory loss, disturbance in behavior and personality, and difficulties in learning. Although the main causes of AD pathogenesis are not fully understood yet, amyloid-ß peptides and tau proteins are supposed to be responsible for AD onset and pathogenesis. Various demographic, genetic, and environmental risk factors are involved in AD onset and pathogenesis such as age, gender, several genes, lipids, malnutrition, and poor diet. Significant changes were observed in microRNA (miRNA) levels between normal and AD cases giving hope for a diagnostic procedure for AD through a simple blood test. As yet, only two classes of AD therapeutic drugs are approved by FDA. They are classified as acetylcholinesterase inhibitors and N-methyl-D-aspartate antagonists (NMDA). Unfortunately, they can only treat the symptoms but cannot cure AD or stop its progression. New therapeutic approaches were developed for AD treatment including acitretin due to its ability to cross blood-brain barrier in the brain of rats and mice and induce the expression of ADAM 10 gene, the α-secretase of human amyloid-ß protein precursor, stimulating the non-amyloidogenic pathway for amyloid-ß protein precursor processing resulting in amyloid-ß reduction. Also stem cells may have a crucial role in AD treatment as they can improve cognitive functions and memory in AD rats through regeneration of damaged neurons. This review spotlights on promising diagnostic techniques such as miRNAs and therapeutic approaches such as acitretin and/or stem cells keeping in consideration AD pathogenesis, stages, symptoms, and risk factors.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Trasplante de Células Madre , Animales , Humanos , Acitretina/farmacología , Acitretina/uso terapéutico , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , Células Madre/fisiología , Susceptibilidad a Enfermedades
7.
Curr Stem Cell Res Ther ; 17(4): 370-388, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35236271

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by progressive cognitive deterioration. All recent therapeutic strategies tend to inhibit the generation of the Aß peptide. These approaches tend to mediate both α - and γ -secretases to undergo the nonamyloidogenic pathway. ADAM10 is the main α-secretase that cleaves APP, and it is regulated by the metabolic product of vitamin A (retinoic acid), which is being widely used recently in AD research as a target for treatment. Mesenchymal stem cells (MSCs) are also used recently as a promising regenerative therapy for AD. OBJECTIVES: The present study aimed to: (1) study the effect of MSCs with/without acitretin on the regulation of Adam10 gene expression in AlCl3-induced AD rat model, and (2) validate the hypothesis that AD is a time-dependent progressive disease that spreads spontaneously even after the stopping of exposure to AlCl3. METHODS: The experimental work has been designed to include three successive phases; AlCl3 induction phase (I), AlCl3 withdrawal phase (W), and therapeutic phase (T). Forty-five male albino Wistar rats were randomly divided into 2 main groups: the control (C) group (15 rats) and AD group (30 rats). The therapeutic potential of MSCs with/without acitretin has been evaluated at behavioral, physiological, molecular, and histopathological levels. RESULTS: Among the three therapeutic groups, combined administration of both MSC and acitretin showed the best compensatory effects on most of the measured parameters. CONCLUSION: The present study approved that AD is a time-dependent progressive disease which spreads spontaneously without more AlCl3 exposure.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Mesenquimatosas , Enfermedades Neurodegenerativas , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteína ADAM10/uso terapéutico , Acitretina/metabolismo , Acitretina/farmacología , Acitretina/uso terapéutico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/uso terapéutico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/uso terapéutico , Animales , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratas
8.
Exp Clin Transplant ; 20(1): 62-68, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33928878

RESUMEN

OBJECTIVES: Hepatocellular carcinoma is the fourth leading cause of cancer deaths in the world. Conven - tional methods of cancer therapy are either invasive or have undesirable side effects. Therefore, exploring new therapeutic strategies to control the progression of hepatocellular carcinoma, such as cell-based therapies, is a key issue for prolonging patient survival. In this study, we aimed to evaluate tumor suppressive effects of mesenchymal stem cells on the in vivo pro - gression of hepatocellular carcinoma in murine model. MATERIALS AND METHODS: Hepatocellular carcinoma was induced in 40 rats with diethylnitrosamine. Rats were divided into 4 groups: 1 group injected with diethylnitrosamine only, 1 group injected with diethylnitrosamine and 1 dose of rat bone marrowderived mesenchymal stem cells, 1 group injected with diethylnitrosamine and 2 doses of rat bone marrowderived mesenchymal stem cells, and 1 group was injected with diethylnitrosamine and 3 doses of rat bone marrow-derived mesenchymal stem cells. Rats were killed after 1 month of dose 3. Liver specimens were histopathologically examined, and serum samples were examined for liver function and cytokines. RESULTS: Histopathological examination revealed that mesenchymal stem cell transplant induced liver regeneration. It also improved liver function as revealed by decreased levels of alanine and aspartate aminotransferase. Mesenchymal stem cells also repaired the immunopathology of the liver environment, as it decreased levels of interleukin 2 and 10, tumor necrosis factor α, and interferon γ. CONCLUSIONS: Mesenchymal stem cell infusion significantly enhanced hepatic structure and function of livers in a rat hepatocellular carcinoma model.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Médula Ósea/patología , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/terapia , Dietilnitrosamina/toxicidad , Modelos Animales de Enfermedad , Humanos , Hígado/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/terapia , Células Madre Mesenquimatosas/patología , Ratones , Pronóstico , Ratas , Resultado del Tratamiento
9.
Bioorg Chem ; 116: 105329, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34544028

RESUMEN

There are current attempts to find a safe substitute or adjuvant for Sorafenib (Sorf), the standard treatment for advanced hepatocellular carcinoma (HCC), as it triggers very harsh side effects and drug-resistance. The therapeutic properties of Bee Venom (BV) and its active component, Melittin (Mel), make them suitable candidates as potential anti-cancer agents per-se or as adjuvants for cancer chemotherapy. Hence, this study aimed to evaluate the combining effect of BV and Mel with Sorf on HepG2 cells and to investigate their molecular mechanisms of action. Docking between Mel and different tumor-markers was performed. The cytotoxicity of BV, Mel and Sorf on HepG2 and THLE-2 cells was conducted. Combinations of BV/Sorf and Mel/Sorf were performed in non-constant ratios on HepG2. Expression of major cancer-related genes and oxidative stress status was evaluated and the cell cycle was analyzed. The computational analysis showed that Mel can bind to and inhibit XIAP, Bcl2, MDM2, CDK2 and MMP12. Single treatments of BV, Mel and Sorf on HepG2 showed lower IC50than on THLE-2. All combinations revealed a synergistic effect at a combination index (CI) < 1. Significant upregulation (p < 0.05) of p53, Bax, Cas3, Cas7 and PTEN and significant downregulation (p < 0.05) of Bcl-2, Cyclin-D1, Rac1, Nf-κB, HIF-1a, VEGF and MMP9 were observed. The oxidative stress markers including MDA, SOD, CAT and GPx showed insignificant changes, while the cell cycle was arrested at G2/M phase. In conclusion, BV and Mel have a synergistic anticancer effect with Sorf on HepG2 that may represent a new enhancing strategy for HCC treatment.


Asunto(s)
Antineoplásicos/farmacología , Venenos de Abeja/farmacología , Meliteno/farmacología , Sorafenib/farmacología , Antineoplásicos/química , Venenos de Abeja/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Peroxidación de Lípido/efectos de los fármacos , Meliteno/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Sorafenib/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
10.
Mol Biol Rep ; 48(7): 5549-5559, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34313924

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a complicated disease with a poor prognosis and high mortality rates. The prevention, control, diagnosis, and treatment of liver cancer have become vital focuses in healthcare research. AIM: This study aimed to evaluate the in vitro effect of taurine (Tau) on the expression of miR-122-5p that targets some limiting glycolytic enzymes and affects the overall glycolytic pathway in HepG2 cells. METHOD: IC50 and the inhibitory effect of Tau on cell proliferation were measured after 48 h by MTT assay. Then, the mRNA expressions of some apoptosis-related genes P53, BAX, Caspase-3, and Bcl-2 were measured using quantitative real-time (qRT-PCR) and the protein levels were confirmed by enzyme-linked immunosorbent assay (ELISA). The activities of some antioxidant's biomarkers were assessed. The gene expression of miR-122-5p that targets some limiting glycolytic enzymes; Aldolase and Lactate dehydrogenase (LDH), were evaluated after treatment with Tau for 48 h. RESULTS: A Significant inhibition in the proliferation of HepG2 was encountered after treatment with Tau in a dose-dependent manner. Moreover, the expression of apoptotic genes p53, Bax, and Caspase-3 exhibited a significant upregulation, while Bcl-2 showed a significant downregulation. These alterations in the expression levels were also confirmed on the protein level. The antioxidant activities of GPx, CAT, and NO were significantly elevated versus untreated control. Also, a significant increase in the expression level of miR-122-5p was observed after treatment with Tau affecting the metabolic activity of HCC cells. Concomitantly, a significant inhibition in ALDOA protein and the hallmark of glycolytic enzymes LDH and Aldolase were observed. CONCLUSIONS: These observations showed that taurine inhibits HepG2 cell proliferation and restores the expression of miR-122-5p which inhibits the hallmark glycolytic enzymes and ultimately the metabolic activity of HCC cells. Tau is assumed to be a promising and effective antitumor therapy of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Metabolismo Energético/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hepáticas/genética , MicroARNs/genética , Taurina/farmacología , Apoptosis/genética , Biomarcadores de Tumor , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Glucólisis/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Redes y Vías Metabólicas/genética
11.
Bioorg Chem ; 114: 105137, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34237644

RESUMEN

A series of novel hybrid compounds of hexahydrobenzo[4,5]thieno[2,3-d]pyrimidine with aminothiazole scaffolds were synthesized. The synthesized compounds were evaluated for their cytotoxic activity against the NCI-60 human tumor cell line panel. Compounds 7c, 7d and 7e exhibited significant antiproliferative activities at 10-5 M dose. Compound 7c exhibited excellent cytotoxic activity against CNS cancer cell lines including SNB-75 and SF-295 as well as renal cancer cell line CAKI-1 when compared with sorafenib as standard anticancer drug. In addition, compound 7d showed almost comparable anticancer activity to sorafenib against SNB-75 cell line and displayed moderate activity against SF-295 and CAKI-1 cell lines in comparison to sorafenib. Compound 7c inhibited the vascular endothelial growth factor receptor 2 (VEGFR-2) with IC50 of 62.48 ± 3.7 nM and decreased both total VEGFR-2 and phosphorylated VEGFR-2 in treated SNB-75 cells suggesting its ability to down regulate cell proliferation, growth, and survival.. The flow cytometric analysis showed that 7c displayed its cytotoxic activity through the reduction of the cellular proliferation and induction of cell cycle arrest at the G2/M phase. Compound 7c clearly boosted the level of the apoptotic caspase-3. All the synthesized compounds were also screened for their antibacterial and antifungal activity against four pathogenic strains of both Gram-positive and Gram-negative as well as Candida albicans. Only compound 7d exhibited antifungal activity against Candida albicans compared to nystatin as the standard antifungal compound.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Tiazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/química , Relación Estructura-Actividad , Tiazoles/química , Células Tumorales Cultivadas , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
12.
Anticancer Agents Med Chem ; 21(2): 246-253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32416702

RESUMEN

BACKGROUND: Identification of factors to detect and improve chemotherapy.response in cancer is the main concern. microRNA-372-3p (miR-372-3p) has been demonstrated to play a crucial role in cellular proliferation, apoptosis and metastasis of various cancers including Hepatocellular Carcinoma (HCC). However, its contribution towards Doxorubicin (Dox) chemosensitivity in HCC has never been studied. OBJECTIVE: This study aims to investigate the potential role of miR-372-3p in enhancing Dox effects on HCC cell line (HepG2). Additionally, the correlation between miR-372-3p and HCC patients who received Transarterial Chemoembolization (TACE) with Dox treatment has been analyzed. METHODS: Different cell processes were elucidated by cell viability, colony formation, apoptosis and wound healing assays after miR-372-3p transfection in HepG2 cells Furthermore, the miR-372-3p level has been estimated in the blood of primary HCC patients treated with TACE/Dox by quantitative real-time PCR assay. Receiver Operating Curve (ROC) analysis for serum miR-372-3p was constructed for its prognostic significance. Finally, the protein level of Mcl-1, the anti-apoptotic player, has been evaluated using western blot. RESULTS: We found a significantly higher level of miR-372-3p in the blood of the responder group of HCC patients who received TACE with Dox than of non-responders. Ectopic expression of miR-372-3p reduced cell proliferation, migration and significantly induced apoptosis in HepG2 cells which was coupled with a decrease of anti-apoptotic protein Mcl-1. CONCLUSION: Our study demonstrated that miR-372-3p acts as a tumor suppressor in HCC and can act as a predictor biomarker for drug response. Furthermore, the data referred for the first time its potential role in drug sensitivity that might be a therapeutic target for HCC.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Doxorrubicina/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , MicroARNs/genética , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/diagnóstico , Quimioembolización Terapéutica , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Supresores de Tumor/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/diagnóstico , Pronóstico
13.
Anticancer Agents Med Chem ; 21(2): 237-245, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32357822

RESUMEN

BACKGROUND: Doxorubicin (DOX) is one of the most common drugs used in cancer therapy, including Hepatocellular Carcinoma (HCC). Drug resistance is one of chemotherapy's significant problems. Emerging studies have shown that microRNAs (miRNAs) could participate in regulating this mechanism. Nevertheless, the impact of miRNAs on HCC chemoresistance is still enigmatic. OBJECTIVE: Investigating the role of microRNA-520c-3p (miR-520c-3p) in the enhancement of the anti-tumor effect of DOX against HepG2 cells. METHODS: Expression profile for liver-related miRNAs (384 miRNAs) has been analyzed on HepG2 cells treated with DOX using qRT-PCR. miR-520c-3p, the most deregulated miRNA, was selected for combination treatment with DOX. The expression level for LEF1, CDK2, CDH1, VIM, Mcl-1 and p53 was evaluated in miR-520c-3p transfected cells. Cell viability, colony formation, wound healing as well as apoptosis assays have been demonstrated. Furthermore, Mcl-1 protein level was measured using the western blot technique. RESULTS: The present data indicated that miR-520c-3p overexpression could render HepG2 cells chemo-sensitive to DOX through enhancing its suppressive effects on proliferation, migration, and induction of apoptosis. The suppressive effect of miR-520c-3p involved altering the expression levels of some key regulators of cell cycle, proliferation, migration and apoptosis, including LEF1, CDK2, CDH1, VIM, Mcl-1 and p53. Interestingly, Mcl-1 was found to be one of the potential targets of miR-520c-3p, and its protein expression level was down-regulated upon miR-520c-3p overexpression. CONCLUSION: Our data referred to the tumor suppressor function of miR-520c-3p that could modulate the chemosensitivity of HepG2 cells towards DOX treatment, providing a promising therapeutic strategy in HCC.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Doxorrubicina/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , MicroARNs/genética , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Supresores de Tumor/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología
14.
Anticancer Agents Med Chem ; 19(9): 1141-1149, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30843494

RESUMEN

BACKGROUND: The hydrazonoyl halides are presently an important target in the field of medicinal chemistry. The interest in the chemistry of hydrazonoyl halides is a consequence of the fact that they undergo a wide variety of reactions which provide routes to a myriad of both heterocyclic and acyclic compounds. In addition, they have diverse biological activities such as antiviral, anthelmintic, antiarthropodal, fungicidal, herbicidal, insecticidal, pesticidal, acaricidal and miticidal Activity correlated to the presence of hydrazonoyl halides. Moreover, many applications in both industrial and pharmaceutical fields have been found to be associated with these halides. Depending on the above facts and continuation to our work, we herein report on the evaluation of the anticancer activity of these two halides prepared according to the published work and trying to know their molecular mechanism that they proceed to stop proliferation and metastasis of tumor cells by molecular tools such as real time PCR using different apoptotic genes, and cell cycle assay. OBJECTIVE: The goal of this present study is to bring attention to the biological activities of hydrazonoyl halides and the molecular pathway they follow to exert their role in apoptotic death of cancer cell. METHODS: Synthesis of hydrazonoyl halides 2c and 2f. The cytotoxic effect against different human cancer cell lines PC3, HepG-2, HCT-116, MCF-7 and also on normal human cell lines as MCF-10 and MCF-12 in a monolayer culture model was evaluated. Their mechanism of action inside cancer cell was evaluated using different molecular tools. CONCLUSION: Strong and promising chemotherapeutic hydrazonoyl halides (2a-2f) were evaluated for their different biological activities. As antimicrobial agents, results indicated that three compounds 2a, 2e and 2f exhibited high activity against two tested gram positive bacteria Staphylococcus aureus, Bacillus subtilis, and gram negative ones Escherichia coli, and Pseudomonas aeruginosa, the rest of the compounds were found to be moderately active against the tested microorganisms. Regarding their antifungal effect, compound 2c exhibited potent and promising effect against Candida albicans, while 2b was the most potent toward Aspergillus flavus Link. The compound 2f has repellent effect. With respect to the in vitro antitumor screening, this was done on different human cancer cell lines; namely PC3, HepG-2, HCT-116, MCF-7 and also on normal human cell lines; as MCF-10 and MCF-12 (normal breast epithelial cell and non-tumorigenic breast epithelial cell line) in a monolayer culture model where screening has been conducted at 100µg/ml (single dose test). Single dose test (100µg/ml) showed that, in case of PC3, all compounds have cytotoxic activity over 90% inhibition, 4 compounds have cytotoxic activity with 100% inhibition with Human colon cancer cell line, 4 compounds showed over 90% inhibition with MCF7 cell line and 4 compounds showed cytotoxic activity over 90% inhibition with HepG-2. Results of IC50 values for most promising compounds showed compounds with values lower than 20µM for all tested human cancer cell line. The promising hydrazonoyl halide 2c and 2f were selected for molecular study to know how they could act inside cancer cell causing death. Two biochemical tests were performed using the two halides 2c and 2f to predict their mechanism of action against breast carcinoma. Real time PCR analysis indicates that the two compounds induced the apoptosis of MCF7 cells through the up regulation of caspase-3, BAX mediated P53 mechanism but unfortunately, they promote the expression of anti-apoptotic protein BCL2. Also, cell cycle assay was performed using two different cell lines MCF7 and HCT116 and data revealed that the two compounds 2c and 2f induced apoptotic cells death of both lines via cell growth arrest at G2/M phase. In addition, it was noted that 2c induced arrest in the two lines more efficiently than 2f at G2/M phase.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Hidrazonas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Aspergillus flavus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Hidrazonas/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...