Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Opin Insect Sci ; 64: 101219, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38848811

RESUMEN

Sleep is conserved across the animal kingdom, and Drosophila melanogaster is a prime model to understand its intricate circadian and homeostatic control. GABA (gamma-aminobutyric acid), the brain's main inhibitory neurotransmitter, plays a central role in sleep. This review delves into GABA's complex mechanisms of actions within Drosophila's sleep-regulating neural networks. We discuss how GABA promotes sleep, both by inhibiting circadian arousal neurons and by being a key neurotransmitter in sleep homeostatic circuits. GABA's impact on sleep is modulated by glia through astrocytic GABA recapture and metabolism. Interestingly, GABA can be coexpressed with other neurotransmitters in sleep-regulating neurons, which likely contributes to context-based sleep plasticity.

2.
Elife ; 132024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716806

RESUMEN

Studies of the starlet sea anemone provide important insights into the early evolution of the circadian clock in animals.


Asunto(s)
Relojes Circadianos , Anémonas de Mar , Animales , Evolución Biológica , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Cnidarios/fisiología , Anémonas de Mar/fisiología
3.
Trends Genet ; 40(5): 387-397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38336520

RESUMEN

The coastline is a particularly challenging environment for its inhabitants. Not only do they have to cope with the solar day and the passing of seasons, but they must also deal with tides. In addition, many marine species track the phase of the moon, especially to coordinate reproduction. Marine animals show remarkable behavioral and physiological adaptability, using biological clocks to anticipate specific environmental cycles. Presently, we lack a basic understanding of the molecular mechanisms underlying circatidal and circalunar clocks. Recent advances in genome engineering and the development of genetically tractable marine model organisms are transforming how we study these timekeeping mechanisms and opening a novel era in marine chronobiology.


Asunto(s)
Organismos Acuáticos , Edición Génica , Animales , Organismos Acuáticos/genética , Genoma/genética , Relojes Biológicos/genética , Ritmo Circadiano/genética
4.
PLoS One ; 18(12): e0296085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38128014

RESUMEN

Spinocerebellar ataxia 2 (SCA2) is a neurodegenerative disorder caused by the expansion of the poly-glutamine (polyQ) tract of Ataxin-2 (ATXN2). Other polyQ-containing proteins such as ATXN7 and huntingtin are associated with the development of neurodegenerative diseases when their N-terminal polyQ domains are expanded. Furthermore, they undergo proteolytic processing events that produce N-terminal fragments that include the polyQ stretch, which are implicated in pathogenesis. Interestingly, N-terminal ATXN2 fragments were reported in a brain extract from a SCA2 patient, but it is currently unknown whether an expanded polyQ domain contributes to ATXN2 proteolytic susceptibility. Here, we used transient expression in HEK293 cells to determine whether ATXN2 is a target for specific N-terminal proteolysis. We found that ATXN2 proteins with either normal or expanded polyQ stretches undergo proteolytic cleavage releasing an N-terminal polyQ-containing fragment. We identified a short amino acid sequence downstream of the polyQ domain that is necessary for N-terminal cleavage of full-length ATXN2 and sufficient to induce proteolysis of a heterologous protein. However, this sequence is not required for cleavage of a short ATXN2 isoform produced from an alternative start codon located just upstream of the CAG repeats encoding the polyQ domain. Our study extends our understanding of ATXN2 posttranslational regulation by revealing that this protein can be the target of specific proteolytic cleavage events releasing polyQ-containing products that are modulated by the N-terminal domain of ATXN2. N-terminal ATXN2 proteolysis of expanded polyQ domains might contribute to SCA2 pathology, as observed in other neurodegenerative disorders caused by polyQ domain expansion.


Asunto(s)
Ataxina-2 , Ataxias Espinocerebelosas , Humanos , Ataxina-2/genética , Ataxina-2/metabolismo , Proteolisis , Células HEK293 , Ataxias Espinocerebelosas/patología , Secuencia de Aminoácidos
5.
J Biol Rhythms ; 38(3): 245-258, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37226809

RESUMEN

The origin of experimental chronobiology can be traced to observations made in the 18th and 19th centuries on the sensitive plant Mimosa, which were described in two seminal reports: Jean-Jacques d'Ortous de Mairan's "Observation Botanique" (A Botanical Observation) and Augustin Pyramus de Candolle's "Du sommeil des feuilles" (On the sleep of leaves). Both report observations of the striking daily closing and opening of Mimosa leaves in controlled environments. This review presents translations of both texts with the aim of staying as faithful as possible to the original French texts. We also present the historical context in which these texts were written and link them to subsequent experiments that aimed at testing the veracity of their central conclusions. In particular, we definitely establish that Mairan himself presented his work to the French Royal Academy of Sciences, while the published report of his observation was authored by Fontenelle, the Secretary of the Academy. In addition, we offer a translation of Mairan's own presentation, based on the hand-written minutes of the academy. Finally, we discuss the decades of work on plant rhythms that laid the foundation for modern experimental chronobiology, including translations and discussion of the insightful and prescient reports by Charles François de Cisternay Dufay, Henri Louis Duhamel du Monceau, Johann Gottfried Zinn, and Wilhelm Pfeffer, which describe their efforts to reproduce and extend Mairan's pioneering observations.


Asunto(s)
Ritmo Circadiano , Mimosa , Sueño , Hojas de la Planta
6.
Curr Biol ; 33(10): 1867-1882.e5, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36977416

RESUMEN

Organisms living in the intertidal zone are exposed to a particularly challenging environment. In addition to daily changes in light intensity and seasonal changes in photoperiod and weather patterns, they experience dramatic oscillations in environmental conditions due to the tides. To anticipate tides, and thus optimize their behavior and physiology, animals occupying intertidal ecological niches have acquired circatidal clocks. Although the existence of these clocks has long been known, their underlying molecular components have proven difficult to identify, in large part because of the lack of an intertidal model organism amenable to genetic manipulation. In particular, the relationship between the circatidal and circadian molecular clocks, and the possibility of shared genetic components, has been a long-standing question. Here, we introduce the genetically tractable crustacean Parhyale hawaiensis as a system for the study of circatidal rhythms. First, we show that P. hawaiensis exhibits robust 12.4-h rhythms of locomotion that can be entrained to an artificial tidal regimen and are temperature compensated. Using CRISPR-Cas9 genome editing, we then demonstrate that the core circadian clock gene Bmal1 is required for circatidal rhythms. Our results thus demonstrate that Bmal1 is a molecular link between circatidal and circadian clocks and establish P. hawaiensis as a powerful system to study the molecular mechanisms underlying circatidal rhythms and their entrainment.


Asunto(s)
Anfípodos , Relojes Circadianos , Animales , Ritmo Circadiano/fisiología , Relojes Circadianos/genética , Fotoperiodo , Locomoción
7.
Front Physiol ; 13: 888262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721569

RESUMEN

Ambient temperature varies constantly. However, the period of circadian pacemakers is remarkably stable over a wide-range of ecologically- and physiologically-relevant temperatures, even though the kinetics of most biochemical reactions accelerates as temperature rises. This thermal buffering phenomenon, called temperature compensation, is a critical feature of circadian rhythms, but how it is achieved remains elusive. Here, we uncovered the important role played by the Drosophila PERIOD (PER) phosphodegron in temperature compensation. This phosphorylation hotspot is crucial for PER proteasomal degradation and is the functional homolog of mammalian PER2 S478 phosphodegron, which also impacts temperature compensation. Using CRISPR-Cas9, we introduced a series of mutations that altered three Serines of the PER phosphodegron. While all three Serine to Alanine substitutions lengthened period at all temperatures tested, temperature compensation was differentially affected. S44A and S45A substitutions caused undercompensation, while S47A resulted in overcompensation. These results thus reveal unexpected functional heterogeneity of phosphodegron residues in thermal compensation. Furthermore, mutations impairing phosphorylation of the per s phosphocluster showed undercompensation, consistent with its inhibitory role on S47 phosphorylation. We observed that S47A substitution caused increased accumulation of hyper-phosphorylated PER at warmer temperatures. This finding was corroborated by cell culture assays in which S47A slowed down phosphorylation-dependent PER degradation at high temperatures, causing PER degradation to be excessively temperature-compensated. Thus, our results point to a novel role of the PER phosphodegron in temperature compensation through temperature-dependent modulation of the abundance of hyper-phosphorylated PER. Our work reveals interesting mechanistic convergences and differences between mammalian and Drosophila temperature compensation of the circadian clock.

8.
Curr Biol ; 32(9): 1895-1908.e5, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35303417

RESUMEN

A precise balance between sleep and wakefulness is essential to sustain a good quality of life and optimal brain function. GABA is known to play a key and conserved role in sleep control, and GABAergic tone should, therefore, be tightly controlled in sleep circuits. Here, we examined the role of the astrocytic GABA transporter (GAT) in sleep regulation using Drosophila melanogaster. We found that a hypomorphic gat mutation (gat33-1) increased sleep amount, decreased sleep latency, and increased sleep consolidation at night. Interestingly, sleep defects were suppressed when gat33-1 was combined with a mutation disrupting wide-awake (wake), a gene that regulates the cell-surface levels of the GABAA receptor resistance to dieldrin (RDL) in the wake-promoting large ventral lateral neurons (l-LNvs). Moreover, RNAi knockdown of rdl and its modulators dnlg4 and wake in these circadian neurons also suppressed gat33-1 sleep phenotypes. Brain immunohistochemistry showed that GAT-expressing astrocytes were located near RDL-positive l-LNv cell bodies and dendritic processes. We concluded that astrocytic GAT decreases GABAergic tone and RDL activation in arousal-promoting LNvs, thus determining proper sleep amount and quality in Drosophila.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Astrocitos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas Transportadoras de GABA en la Membrana Plasmática , Neuronas GABAérgicas/metabolismo , Neuronas/fisiología , Calidad de Vida , Receptores de GABA-A , Sueño/fisiología
9.
Mol Psychiatry ; 26(12): 7793-7802, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34471250

RESUMEN

Dopamine (DA) is required for movement, sleep, and reward, and DA signaling is tightly controlled by the presynaptic DA transporter (DAT). Therapeutic and addictive psychostimulants, including methylphenidate (Ritalin; MPH), cocaine, and amphetamine (AMPH), markedly elevate extracellular DA via their actions as competitive DAT inhibitors (MPH, cocaine) and substrates (AMPH). DAT silencing in mice and invertebrates results in hyperactivity, reduced sleep, and blunted psychostimulant responses, highlighting DAT's essential role in DA-dependent behaviors. DAT surface expression is not static; rather it is dynamically regulated by endocytic trafficking. PKC-stimulated DAT endocytosis requires the neuronal GTPase, Rit2, and Rit2 silencing in mouse DA neurons impacts psychostimulant sensitivity. However, it is unknown whether or not Rit2-mediated changes in psychostimulant sensitivity are DAT-dependent. Here, we leveraged Drosophila melanogaster to test whether the Drosophila Rit2 ortholog, Ric, impacts dDAT function, trafficking, and DA-dependent behaviors. Orthologous to hDAT and Rit2, dDAT and Ric directly interact, and the constitutively active Ric mutant Q117L increased dDAT surface levels and function in cell lines and ex vivo Drosophila brains. Moreover, DAergic RicQ117L expression caused sleep fragmentation in a DAT-dependent manner but had no effect on total sleep and daily locomotor activity. Importantly, we found that Rit2 is required for AMPH-stimulated DAT internalization in mouse striatum, and that DAergic RicQ117L expression significantly increased Drosophila AMPH sensitivity in a DAT-dependent manner, suggesting a conserved impact of Ric-dependent DAT trafficking on AMPH sensitivity. These studies support that the DAT/Rit2 interaction impacts both baseline behaviors and AMPH sensitivity, potentially by regulating DAT trafficking.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Unión al GTP Monoméricas , Proteínas ras/metabolismo , Anfetamina/farmacología , Animales , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Neuronas Dopaminérgicas/metabolismo , Drosophila melanogaster , GTP Fosfohidrolasas/metabolismo , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Calidad del Sueño
10.
J Biol Rhythms ; 35(1): 16-27, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31599203

RESUMEN

CRYPTOCHROMES (CRYs) are structurally related to ultraviolet (UV)/blue-sensitive DNA repair enzymes called photolyases but lack the ability to repair pyrimidine dimers generated by UV exposure. First identified in plants, CRYs have proven to be involved in light detection and various light-dependent processes in a broad range of organisms. In Drosophila, CRY's best understood role is the cell-autonomous synchronization of circadian clocks. However, CRY also contributes to the amplitude of circadian oscillations in a light-independent manner, controls arousal and UV avoidance, influences visual photoreception, and plays a key role in magnetic field detection. Here, we review our current understanding of the mechanisms underlying CRY's various circadian and noncircadian functions in fruit flies.


Asunto(s)
Ritmo Circadiano , Criptocromos/genética , Proteínas de Drosophila/genética , Drosophila/genética , Luz , Células Fotorreceptoras de Invertebrados/fisiología , Animales , Relojes Circadianos , Criptocromos/metabolismo , Drosophila/enzimología , Proteínas de Drosophila/metabolismo
11.
Elife ; 82019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31702555

RESUMEN

The Drosophila circadian pacemaker consists of transcriptional feedback loops subjected to post-transcriptional and post-translational regulation. While post-translational regulatory mechanisms have been studied in detail, much less is known about circadian post-transcriptional control. Thus, we targeted 364 RNA binding and RNA associated proteins with RNA interference. Among the 43 hits we identified was the alternative splicing regulator P-element somatic inhibitor (PSI). PSI regulates the thermosensitive alternative splicing of timeless (tim), promoting splicing events favored at warm temperature over those increased at cold temperature. Psi downregulation shortens the period of circadian rhythms and advances the phase of circadian behavior under temperature cycle. Interestingly, both phenotypes were suppressed in flies that could produce TIM proteins only from a transgene that cannot form the thermosensitive splicing isoforms. Therefore, we conclude that PSI regulates the period of Drosophila circadian rhythms and circadian behavior phase during temperature cycling through its modulation of the tim splicing pattern.


Asunto(s)
Empalme Alternativo/genética , Conducta Animal , Ritmo Circadiano/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas de Unión al ARN/metabolismo , Temperatura , Animales , Relojes Circadianos/genética , Regulación hacia Abajo/genética , Drosophila melanogaster/genética , Genes de Insecto , Interferencia de ARN
12.
Biochem Mol Biol Educ ; 47(1): 67-75, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578703

RESUMEN

Visualizations are useful tools for helping students to understand chemistry concepts at the particulate level. A classroom activity was developed based on learning theory and evidence-based practices, combining protein visualization with thermodynamic parameters from differential scanning fluorimetry (DSF) data analysis. Coding of student responses showed that many students were able to establish the desired connections among protein structure, thermodynamic parameters, and experimental data analysis, while a few did not recognize all the differences between the folded and unfolded forms of the protein. The activity elicits student prior knowledge through the pre-class activity, has the students examine the interactions within a protein molecule through the PyMOL activity, introduces DSF analysis using the learning cycle through the Guided Inquiry activity, and tests student learning through the post-class activity. Upon completing the activity, the majority of students successfully met the learning goals. © 2018 International Union of Biochemistry and Molecular Biology, 47(1):67-75, 2018.


Asunto(s)
Biofisica/educación , Fluorometría , Aprendizaje , Desplegamiento Proteico , Proteínas/química , Termodinámica , Humanos , Conformación Proteica , Estudiantes
13.
J Neurosci ; 38(27): 6161-6171, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29875268

RESUMEN

Light is one of the chief environmental cues that reset circadian clocks. In Drosophila, CRYPTOCHROME (CRY) mediates acute photic resetting of circadian clocks by promoting the degradation of TIMELESS in a cell-autonomous manner. Thus, even circadian oscillators in peripheral organs can independently perceive light in Drosophila However, there is substantial evidence for nonautonomous mechanisms of circadian photoreception in the brain. We have previously shown that the morning (M) and evening (E) oscillators are critical light-sensing neurons that cooperate to shift the phase of circadian behavior in response to light input. We show here that light can efficiently phase delay or phase advance circadian locomotor behavior in male Drosophila even when either the M- or the E-oscillators are ablated, suggesting that behavioral phase shifts and their directionality are largely a consequence of the cell-autonomous nature of CRY-dependent photoreception. Our observation that the phase response curves of brain and peripheral oscillators are remarkably similar further supports this idea. Nevertheless, the neural network modulates circadian photoresponses. We show that the M-oscillator neurotransmitter pigment dispersing factor plays a critical role in the coordination between M- and E-oscillators after light exposure, and we uncover a potential role for a subset of dorsal neurons in the control of phase advances. Thus, neural modulation of autonomous light detection might play an important role in the plasticity of circadian behavior.SIGNIFICANCE STATEMENT Input pathways provide circadian rhythms with the flexibility needed to harmonize their phase with environmental cycles. Light is the chief environmental cue that synchronizes circadian clocks. In Drosophila, the photoreceptor CRYPTOCHROME resets circadian clocks cell-autonomously. However, recent studies indicate that, in the brain, interactions between clock neurons are critical to reset circadian locomotor behavior. We present evidence supporting the idea that the ability of flies to advance or delay their rhythmic behavior in response to light input essentially results from cell-autonomous photoreception. However, because of their networked organization, we find that circadian neurons have to cooperate to reset the phase of circadian behavior in response to photic cues. Our work thus helps to reconcile cell-autonomous and non-cell-autonomous models of circadian entrainment.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Criptocromos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Ojo/metabolismo , Locomoción/fisiología , Red Nerviosa/fisiología , Animales , Drosophila , Luz , Masculino , Células Fotorreceptoras de Invertebrados/fisiología
14.
Curr Biol ; 28(13): 2007-2017.e4, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29910074

RESUMEN

The brain clock that drives circadian rhythms of locomotor activity relies on a multi-oscillator neuronal network. In addition to synchronizing the clock with day-night cycles, light also reformats the clock-driven daily activity pattern. How changes in lighting conditions modify the contribution of the different oscillators to remodel the daily activity pattern remains largely unknown. Our data in Drosophila indicate that light readjusts the interactions between oscillators through two different modes. We show that a morning s-LNv > DN1p circuit works in series, whereas two parallel evening circuits are contributed by LNds and other DN1ps. Based on the photic context, the master pacemaker in the s-LNv neurons swaps its enslaved partner-oscillator-LNd in the presence of light or DN1p in the absence of light-to always link up with the most influential phase-determining oscillator. When exposure to light further increases, the light-activated LNd pacemaker becomes independent by decoupling from the s-LNvs. The calibration of coupling by light is layered on a clock-independent network interaction wherein light upregulates the expression of the PDF neuropeptide in the s-LNvs, which inhibits the behavioral output of the DN1p evening oscillator. Thus, light modifies inter-oscillator coupling and clock-independent output-gating to achieve flexibility in the network. It is likely that the light-induced changes in the Drosophila brain circadian network could reveal general principles of adapting to varying environmental cues in any neuronal multi-oscillator system.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Drosophila melanogaster/fisiología , Luz , Animales , Encéfalo/fisiología , Masculino , Neuronas/fisiología
16.
Proc Natl Acad Sci U S A ; 114(32): E6669-E6677, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28743754

RESUMEN

The physiology and behavior of many organisms are subject to daily cycles. In Drosophila melanogaster the daily locomotion patterns of single flies are characterized by bursts of activity at dawn and dusk. Two distinct clusters of clock neurons-morning oscillators (M cells) and evening oscillators (E cells)-are largely responsible for these activity bursts. In contrast, male-female pairs of flies follow a distinct pattern, most notably characterized by an activity trough at dusk followed by a high level of male courtship during the night. This male sex drive rhythm (MSDR) is mediated by the M cells along with DN1 neurons, a cluster of clock neurons located in the dorsal posterior region of the brain. Here we report that males lacking Salt-inducible kinase 3 (SIK3) expression in M cells exhibit a short period of MSDR but a long period of single-fly locomotor rhythm (SLR). Moreover, lack of Sik3 in M cells decreases the amplitude of PERIOD (PER) cycling in DN1 neurons, suggesting that SIK3 non-cell-autonomously regulates DN1 neurons' molecular clock. We also show that Sik3 reduction interferes with circadian nucleocytoplasmic shuttling of Histone deacetylase 4 (HDAC4), a SIK3 phosphorylation target, in clock neurons and that constitutive HDAC4 localization in the nucleus shortens the period of MSDR. Taking these findings together, we conclude that SIK3-HDAC4 signaling in M cells regulates MSDR by regulating the molecular oscillation in DN1 neurons.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Histona Desacetilasas/metabolismo , Neuronas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Histona Desacetilasas/genética , Masculino , Neuronas/citología , Proteínas Serina-Treonina Quinasas/genética
17.
J Neurosci ; 36(6): 2007-13, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26865623

RESUMEN

Animals use circadian rhythms to anticipate daily environmental changes. Circadian clocks have a profound effect on behavior. In Drosophila, for example, brain pacemaker neurons dictate that flies are mostly active at dawn and dusk. miRNAs are small, regulatory RNAs (≈22 nt) that play important roles in posttranscriptional regulation. Here, we identify miR-124 as an important regulator of Drosophila circadian locomotor rhythms. Under constant darkness, flies lacking miR-124 (miR-124(KO)) have a dramatically advanced circadian behavior phase. However, whereas a phase defect is usually caused by a change in the period of the circadian pacemaker, this is not the case in miR-124(KO) flies. Moreover, the phase of the circadian pacemaker in the clock neurons that control rhythmic locomotion is not altered either. Therefore, miR-124 modulates the output of circadian clock neurons rather than controlling their molecular pacemaker. Circadian phase is also advanced under temperature cycles, but a light/dark cycle partially corrects the defects in miR-124(KO) flies. Indeed, miR-124(KO) shows a normal evening phase under the latter conditions, but morning behavioral activity is suppressed. In summary, miR-124 controls diurnal activity and determines the phase of circadian locomotor behavior without affecting circadian pacemaker function. It thus provides a potent entry point to elucidate the mechanisms by which the phase of circadian behavior is determined. SIGNIFICANCE STATEMENT: In animals, molecular circadian clocks control the timing of behavioral activities to optimize them with the day/night cycle. This is critical for their fitness and survival. The mechanisms by which the phase of circadian behaviors is determined downstream of the molecular pacemakers are not yet well understood. Recent studies indicate that miRNAs are important regulators of circadian outputs. We found that miR-124 shapes diurnal behavioral activity and has a striking impact on the phase of circadian locomotor behavior. Surprisingly, the period and phase of the neural circadian pacemakers driving locomotor rhythms are unaffected. Therefore, miR-124 is a critical modulator of the circadian output pathways that control circadian behavioral rhythms.


Asunto(s)
Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , MicroARNs/genética , MicroARNs/fisiología , Actividad Motora/genética , Actividad Motora/fisiología , Animales , Relojes Biológicos , Oscuridad , Drosophila melanogaster , Luz , Masculino , Mutación/genética , Mutación/fisiología , Red Nerviosa/anomalías , Células Fotorreceptoras de Invertebrados/fisiología , Temperatura
18.
Cell ; 163(5): 1214-1224, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26590423

RESUMEN

Circadian clocks integrate light and temperature input to remain synchronized with the day/night cycle. Although light input to the clock is well studied, the molecular mechanisms by which circadian clocks respond to temperature remain poorly understood. We found that temperature phase shifts Drosophila circadian clocks through degradation of the pacemaker protein TIM. This degradation is mechanistically distinct from photic CRY-dependent TIM degradation. Thermal TIM degradation is triggered by cytosolic calcium increase and CALMODULIN binding to TIM and is mediated by the atypical calpain protease SOL. This thermal input pathway and CRY-dependent light input thus converge on TIM, providing a molecular mechanism for the integration of circadian light and temperature inputs. Mammals use body temperature cycles to keep peripheral clocks synchronized with their brain pacemaker. Interestingly, downregulating the mammalian SOL homolog SOLH blocks thermal mPER2 degradation and phase shifts. Thus, we propose that circadian thermosensation in insects and mammals share common principles.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas del Tejido Nervioso/metabolismo , Animales , Relojes Biológicos , Señalización del Calcio , Calmodulina/metabolismo , Calpaína , Ritmo Circadiano , Masculino , Mamíferos/fisiología , Proteolisis
19.
Curr Opin Insect Sci ; 7: 51-57, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26120561

RESUMEN

Drosophila is a powerful model to understand the mechanisms underlying circadian rhythms. The Drosophila molecular clock is comprised of transcriptional feedback loops. The expressions of the critical transcriptional activator CLK and its repressors PER and TIM are under tight transcriptional control. However, posttranslational modification of these proteins and regulation of their stability are critical to their function and to the generation of 24-hr period rhythms. We review here recent progress made in our understanding of PER, TIM and CLK posttranslational control. We also review recent studies that are uncovering the importance of novel regulatory mechanisms that affect mRNA stability and translation of circadian pacemaker proteins and their output.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...