Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 582, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755427

RESUMEN

The DNA methyltransferase DNMT3C appeared as a duplication of the DNMT3B gene in muroids and is required for silencing of young retrotransposons in the male germline. Using specialized assay systems, we investigate the flanking sequence preferences of DNMT3C and observe characteristic preferences for cytosine at the -2 and -1 flank that are unique among DNMT3 enzymes. We identify two amino acids in the catalytic domain of DNMT3C (C543 and V547) that are responsible for the DNMT3C-specific flanking sequence preferences and evolutionary conserved in muroids. Reanalysis of published data shows that DNMT3C flanking preferences are consistent with genome-wide methylation patterns in mouse ES cells only expressing DNMT3C. Strikingly, we show that CpG sites with the preferred flanking sequences of DNMT3C are enriched in murine retrotransposons that were previously identified as DNMT3C targets. Finally, we demonstrate experimentally that DNMT3C has elevated methylation activity on substrates derived from these biological targets. Our data show that DNMT3C flanking sequence preferences match the sequences of young murine retrotransposons which facilitates their methylation. By this, our data provide mechanistic insights into the molecular co-evolution of repeat elements and (epi)genetic defense systems dedicated to maintain genomic stability in mammals.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , Retroelementos , Animales , Retroelementos/genética , Ratones , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Islas de CpG , Masculino
2.
Biochimie ; 208: 66-74, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36528185

RESUMEN

The DNMT3A DNA methyltransferase is an important epigenetic enzyme that is frequently mutated in cancers, particularly in AML. The heterozygous R736H mutation in the FF-interface of the tetrameric enzyme is the second most frequently observed DNMT3A cancer mutation, but its pathogenic mechanism is unclear. We show here that R736H leads to a moderate reduction in catalytic activity of 20-40% depending on the substrate, but no changes in CpG specificity, flanking sequence preferences and subnuclear localization. Strikingly, R736H showed a very strong stimulation by DNMT3L and the R736H/DNMT3L complex was 3-fold more active than WT/DNMT3L. Similarly, formation of mixed R736H/DNMT3A WT FF-interfaces led to an increased activity. R736H/DNMT3L and mixed R736H/DNMT3A WT FF-interfaces were less stable than interfaces not involving R736H, suggesting that an increased flexibility of the mixed interfaces stimulates catalytic activity. Our data suggest that aberrant activity of DNMT3A R736H may lead to DNA hypermethylation in cancer cells which could cause changes in gene expression.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Factores de Transcripción , Heterocigoto , Mutación , ADN
3.
J Mol Biol ; 434(7): 167482, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131259

RESUMEN

Somatic R882H DNMT3A mutations occur frequently in AML, but their pathogenic mechanism is unclear. As R882H mutations usually are heterozygous, wildtype (WT) and R882H subunits co-exist in affected cells. R882 is located in the RD interface of DNMT3A tetramers, which forms the DNA binding site. R882H causes strong changes in the flanking sequence preferences of DNMT3A. Here, we analyzed flanking sequence preferences for CGNNNN sites showing that most disfavored sites are methylated 4-5 fold slower by R882H than WT, while it methylates most preferred sites 2-fold faster. Overall, R882H was more active than WT at 13% and less active at 52% of all CGNNNN sites. We prepared mixed DNMT3A heterotetramers containing WT and R882H subunits and show that mixed complexes preferentially assemble with an R882H/R882H RD interface. Structural comparisons and MD simulations confirmed the conclusion that the R882H RD interface is more stable than that of WT, in part because H882 forms an inter-subunit contact in the RD interface, while R882 contacts the DNA. As the subunits at the RD interface contribute the two active centers to the DNMT3A tetramer, R882H characteristic flanking sequence preferences of DNMT3A were observed in mixed tetrameric complexes containing WT and R882H subunits, and they are not diluted by the "averaged" effects of mixed or WT interfaces. Hence, R882H has a dominant effect on the flanking sequence preferences and other catalytic properties of DNMT3A in samples containing WT and R882H subunits, which may explain its pathogenic effect in heterozygous state.


Asunto(s)
ADN Metiltransferasa 3A , Leucemia Mieloide Aguda , Metilación de ADN , ADN Metiltransferasa 3A/química , ADN Metiltransferasa 3A/genética , ADN Metiltransferasa 3A/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Mutación , Secuencias Repetidas Terminales
4.
J Mol Biol ; 433(19): 167186, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34375615

RESUMEN

DNA interacting enzymes recognize their target sequences embedded in variable flanking sequence context. The influence of flanking sequences on enzymatic activities of DNA methyltransferases (DNMTs) can be systematically studied with "deep enzymology" approaches using pools of double-stranded DNA substrates, which contain target sites in random flanking sequence context. After incubation with DNMTs and bisulfite conversion, the methylation states and flanking sequences of individual DNA molecules are determined by NGS. Deep enzymology studies with different human and mouse DNMTs revealed strong influences of flanking sequences on their CpG and non-CpG methylation activity and the structures of DNMT-DNA complexes. Differences in flanking sequence preferences of DNMT3A and DNMT3B were shown to be related to the prominent role of DNMT3B in the methylation of human SATII repeat elements. Mutational studies in DNMT3B discovered alternative interaction networks between the enzyme and the DNA leading to a partial equalization of the effects of different flanking sequences. Structural studies in DNMT1 revealed striking correlations between enzymatic activities and flanking sequence dependent conformational changes upon DNA binding. Correlation of the biochemical data with cellular methylation patterns demonstrated that flanking sequence preferences are an important parameter that influences genomic DNA methylation patterns together with other mechanisms targeting DNMTs to genomic sites.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN/genética , ADN/metabolismo , Animales , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/química , Humanos , Ratones , Modelos Moleculares , Conformación Proteica
5.
Nucleic Acids Res ; 49(14): 8294-8308, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289056

RESUMEN

DNMT3A/3L heterotetramers contain two active centers binding CpG sites at 12 bp distance, however their interaction with DNA not containing this feature is unclear. Using randomized substrates, we observed preferential co-methylation of CpG sites with 6, 9 and 12 bp spacing by DNMT3A and DNMT3A/3L. Co-methylation was favored by AT bases between the 12 bp spaced CpG sites consistent with their increased bending flexibility. SFM analyses of DNMT3A/3L complexes bound to CpG sites with 12 bp spacing revealed either single heterotetramers inducing 40° DNA bending as observed in the X-ray structure, or two heterotetramers bound side-by-side to the DNA yielding 80° bending. SFM data of DNMT3A/3L bound to CpG sites spaced by 6 and 9 bp revealed binding of two heterotetramers and 100° DNA bending. Modeling showed that for 6 bp distance between CpG sites, two DNMT3A/3L heterotetramers could bind side-by-side on the DNA similarly as for 12 bp distance, but with each CpG bound by a different heterotetramer. For 9 bp spacing our model invokes a tetramer swap of the bound DNA. These additional DNA interaction modes explain how DNMT3A and DNMT3A/3L overcome their structural preference for CpG sites with 12 bp spacing during the methylation of natural DNA.


Asunto(s)
Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , ADN/genética , Sitios de Unión/genética , ADN/ultraestructura , ADN (Citosina-5-)-Metiltransferasas/ultraestructura , ADN Metiltransferasa 3A , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/ultraestructura , Humanos , Dominios Proteicos/genética
6.
Methods Protoc ; 4(1)2020 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-33375510

RESUMEN

Mal d 1 is the primary apple allergen in northern Europe. To explain the differences in the allergenicity of apple varieties, it is essential to study its properties and interaction with other phytochemicals, which might modulate the allergenic potential. Therefore, an optimized production route followed by an unsophisticated purification step for Mal d 1 and respective mutants is desired to produce sufficient amounts. We describe a procedure for the transformation of the plasmid in competent E. coli cells, protein expression and rapid one-step purification. r-Mal d 1 with and without a polyhistidine-tag are purified by immobilized metal ion affinity chromatography (IMAC) and fast-protein liquid chromatography (FPLC) using a high-resolution anion-exchange column, respectively. Purity is estimated by SDS-PAGE using an image-processing program (Fiji). For both mutants an appropriate yield of r-Mal d 1 with purity higher than 85% is achieved. The allergen is characterized after tryptic in gel digestion by peptide analyses using HPLC-MS/MS. Secondary structure elements are calculated based on CD-spectroscopy and the negligible impact of the polyhistidine-tag on the folding is confirmed. The formation of dimers is proved by mass spectrometry and reduction by DTT prior to SDS-PAGE. Furthermore, the impact of the freeze and thawing process, freeze drying and storage on dimer formation is investigated.

7.
Nat Commun ; 11(1): 3355, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620778

RESUMEN

Mammalian DNA methylation patterns are established by two de novo DNA methyltransferases, DNMT3A and DNMT3B, which exhibit both redundant and distinctive methylation activities. However, the related molecular basis remains undetermined. Through comprehensive structural, enzymology and cellular characterization of DNMT3A and DNMT3B, we here report a multi-layered substrate-recognition mechanism underpinning their divergent genomic methylation activities. A hydrogen bond in the catalytic loop of DNMT3B causes a lower CpG specificity than DNMT3A, while the interplay of target recognition domain and homodimeric interface fine-tunes the distinct target selection between the two enzymes, with Lysine 777 of DNMT3B acting as a unique sensor of the +1 flanking base. The divergent substrate preference between DNMT3A and DNMT3B provides an explanation for site-specific epigenomic alterations seen in ICF syndrome with DNMT3B mutations. Together, this study reveals distinctive substrate-readout mechanisms of the two DNMT3 enzymes, implicative of their differential roles during development and pathogenesis.


Asunto(s)
Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Animales , Dominio Catalítico , Línea Celular , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/ultraestructura , ADN Metiltransferasa 3A , Células Madre Embrionarias , Pruebas de Enzimas , Epigénesis Genética , Cara/anomalías , Humanos , Ratones , Mutación , Enfermedades de Inmunodeficiencia Primaria/genética , Relación Estructura-Actividad , Especificidad por Sustrato/genética , Difracción de Rayos X , ADN Metiltransferasa 3B
8.
Nucleic Acids Res ; 47(21): 11355-11367, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31620784

RESUMEN

Somatic DNMT3A mutations at R882 are frequently observed in AML patients including the very abundant R882H, but also R882C, R882P and R882S. Using deep enzymology, we show here that DNMT3A-R882H has more than 70-fold altered flanking sequence preferences when compared with wildtype DNMT3A. The R882H flanking sequence preferences mainly differ on the 3' side of the CpG site, where they resemble DNMT3B, while 5' flanking sequence preferences resemble wildtype DNMT3A, indicating that R882H behaves like a DNMT3A/DNMT3B chimera. Investigation of the activity and flanking sequence preferences of other mutations of R882 revealed that they cause similar effects. Bioinformatic analyses of genomic methylation patterns focusing on flanking sequence effects after expression of wildtype DNMT3A and R882H in human cells revealed that genomic methylation patterns reflect the details of the altered flanking sequence preferences of R882H. Concordantly, R882H specific hypermethylation in AML patients was strongly correlated with the R882H flanking sequence preferences. R882H specific DNA hypermethylation events in AML patients were accompanied by R882H specific mis-regulation of several genes with strong cancer connection, which are potential downstream targets of R882H. In conclusion, our data provide novel and detailed mechanistic understanding of the pathogenic mechanism of the DNMT3A R882H somatic cancer mutation.


Asunto(s)
Región de Flanqueo 5'/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Mutación Missense , Sustitución de Aminoácidos , Arginina/genética , Sitios de Unión/genética , Dominio Catalítico , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN Metiltransferasa 3A , Células HCT116 , Histidina/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Especificidad por Sustrato/genética
9.
J Mol Biol ; 431(24): 5063-5074, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31634469

RESUMEN

The PWWP domain of DNMT3 DNA methyltransferases binds to histone H3 tails containing methylated K36, and this activity is important for heterochromatic targeting. Here, we show that the PWWP domain of mouse DNMT3A binds to H3K36me2 and H3K36me3 with a slight preference for H3K36me2. PWWP domains have also been reported to bind to DNA, and the close proximity of H3K36 and nucleosomal DNA suggests a combined binding to H3K36me2/3 and DNA. We show here that the DNMT3A PWWP domain binds to DNA with a weak preference for AT-rich sequences and that the designed charge reversal R362E mutation disrupts DNA binding. The K295E mutation, as well as K295I recently identified in paraganglioma, a rare neuroendocrine neoplasm, disrupts both DNA and H3K36me2/3 binding, which is in agreement with the proximity of K295 to residues involved in K36me2/3 methyllysine binding. Nucleosome pulldown experiments show that DNA binding and H3K36me2/3 binding are important for the interaction of the DNMT3A PWWP domain with nucleosomes. Localization studies of transiently transfected fluorescently-tagged wild-type and PWWP-mutated full-length DNMT3A indicate that both interactions contribute to the subnuclear localization of DNMT3A in mouse cells. In summary, our data demonstrate that the combined binding of the DNMT3A PWWP domain to the H3 tail containing K36me2/3 and to the nucleosomal or linker DNA is important for its chromatin interaction and subnuclear targeting of DNMT3A in living cells.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN/metabolismo , Histonas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Animales , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Espacio Intracelular/metabolismo , Ratones , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Transporte de Proteínas
10.
J Mol Biol ; 431(17): 3139-3145, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31229457

RESUMEN

Recently, it has been discovered that different DNA-(cytosine C5)-methyltransferases including DNMT3A generate low levels of 3mC [Rosic et al. (2018), Nat. Genet., 50, 452-459]. This reaction resulted in the co-evolution of DNMTs and ALKB2 DNA repair enzymes, but its mechanism remained elusive. Here, we investigated the catalytic mechanism of DNMT3A for cytosine N3 methylation. We generated several DNMT3A variants with mutated catalytic residues and measured their activities in 5mC and 3mC generation by liquid chromatography linked to tandem mass spectrometry. Our data suggest that the methylation of N3 instead of C5 is caused by an inverted binding of the flipped cytosine target base into the active-site pocket of the DNA methyltransferase, which is partially compatible with the arrangement of catalytic amino acid residues. Given that all DNA-(cytosine C5)-methyltransferases have a common catalytic mechanism, it is likely that other enzymes of this class generate 3mC following the same mechanism.


Asunto(s)
Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/fisiología , Dominio Catalítico , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Reparación del ADN , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida
11.
Sci Rep ; 8(1): 13242, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185810

RESUMEN

The DNA methyltransferase DNMT3A R882H mutation is observed in 25% of all AML patients. DNMT3A is active as tetramer and the R882H mutation is located in one of the subunit/subunit interfaces. Previous work has reported that formation of mixed wildtype/R882H complexes leads to a strong loss of catalytic activity observed in in vitro DNA methylation assays (Russler-Germain et al., 2014, Cancer Cell 25:442-454). To investigate this effect further, we have prepared mixed wildtype/R882H DNMT3A complexes by incubation of individually purified subunits of the DNMT3A catalytic domain and full-length DNMT3A2. In addition, we have used a double affinity tag approach and specifically purified mixed catalytic domain complexes formed after co-expression of R882H and wildtype subunits in E. coli cells. Afterwards, we determined the catalytic activity of the mixed complexes and compared it to that of purified complexes only consisting of one subunit type. In both settings, the expected catalytic activities of mixed R882H/wildtype complexes were observed demonstrating an absence of a dominant negative effect of the R882H mutation in purified DNMT3A enzymes. This result suggests that heterocomplex formation of DNMT3A and R882H is unlikely to cause dominant negative effects in human cells as well. The limitations of this conclusion and its implications are discussed.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Mutación , Dominio Catalítico , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Humanos , Modelos Moleculares , Multimerización de Proteína
12.
Nucleic Acids Res ; 46(17): 9044-9056, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30102379

RESUMEN

Despite their central importance in mammalian development, the mechanisms that regulate the DNA methylation machinery and thereby the generation of genomic methylation patterns are still poorly understood. Here, we identify the 5mC-binding protein MeCP2 as a direct and strong interactor of DNA methyltransferase 3 (DNMT3) proteins. We mapped the interaction interface to the transcriptional repression domain of MeCP2 and the ADD domain of DNMT3A and find that binding of MeCP2 strongly inhibits the activity of DNMT3A in vitro. This effect was reinforced by cellular studies where a global reduction of DNA methylation levels was observed after overexpression of MeCP2 in human cells. By engineering conformationally locked DNMT3A variants as novel tools to study the allosteric regulation of this enzyme, we show that MeCP2 stabilizes the closed, autoinhibitory conformation of DNMT3A. Interestingly, the interaction with MeCP2 and its resulting inhibition were relieved by the binding of K4 unmodified histone H3 N-terminal tail to the DNMT3A-ADD domain. Taken together, our data indicate that the localization and activity of DNMT3A are under the combined control of MeCP2 and H3 tail modifications where, depending on the modification status of the H3 tail at the binding sites, MeCP2 can act as either a repressor or activator of DNA methylation.


Asunto(s)
Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN/química , Epigénesis Genética , Histonas/genética , Proteína 2 de Unión a Metil-CpG/genética , Regulación Alostérica , Animales , Sitios de Unión , Química Encefálica , Cromatina/química , Clonación Molecular , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Histonas/química , Histonas/metabolismo , Humanos , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Mutagénesis Sitio-Dirigida/métodos , Unión Proteica , Ingeniería de Proteínas/métodos , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Nucleic Acids Res ; 46(6): 3130-3139, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29518238

RESUMEN

The DNMT3A R882H mutation is frequently observed in acute myeloid leukemia (AML). It is located in the subunit and DNA binding interface of DNMT3A and has been reported to cause a reduction in activity and dominant negative effects. We investigated the mechanistic consequences of the R882H mutation on DNMT3A showing a roughly 40% reduction in overall DNA methylation activity. Biochemical assays demonstrated that R882H does not change DNA binding affinity, protein stability or subnuclear distribution of DNMT3A. Strikingly, DNA methylation experiments revealed pronounced changes in the flanking sequence preference of the DNMT3A-R882H mutant. Based on these results, different DNA substrates with selected flanking sequences were designed to be favored or disfavored by R882H. Kinetic analyses showed that the R882H favored substrate was methylated by R882H with 45% increased rate when compared with wildtype DNMT3A, while methylation of the disfavored substrate was reduced 7-fold. Our data expand the model of the potential carcinogenic effect of the R882H mutation by showing CpG site specific activity changes. This result suggests that R882 is involved in the indirect readout of flanking sequence preferences of DNMT3A and it may explain the particular enrichment of the R882H mutation in cancer patients by revealing mutation specific effects.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN/metabolismo , Mutación Missense , Enfermedad Aguda , Sitios de Unión/genética , Islas de CpG/genética , ADN/química , ADN/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Humanos , Leucemia Mieloide/enzimología , Leucemia Mieloide/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato
14.
Nat Genet ; 50(3): 452-459, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29459678

RESUMEN

Methylation at the 5 position of cytosine in DNA (5meC) is a key epigenetic mark in eukaryotes. Once introduced, 5meC can be maintained through DNA replication by the activity of 'maintenance' DNA methyltransferases (DNMTs). Despite their ancient origin, DNA methylation pathways differ widely across animals, such that 5meC is either confined to transcribed genes or lost altogether in several lineages. We used comparative epigenomics to investigate the evolution of DNA methylation. Although the model nematode Caenorhabditis elegans lacks DNA methylation, more basal nematodes retain cytosine DNA methylation, which is targeted to repeat loci. We found that DNA methylation coevolved with the DNA alkylation repair enzyme ALKB2 across eukaryotes. In addition, we found that DNMTs introduced the toxic lesion 3-methylcytosine into DNA both in vitro and in vivo. Alkylation damage is therefore intrinsically associated with DNMT activity, and this may promote the loss of DNA methylation in many species.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Daño del ADN , Metilación de ADN/fisiología , Evolución Molecular , Animales , Caenorhabditis elegans , Secuencia Conservada , Elementos Transponibles de ADN/fisiología , Eucariontes/clasificación , Eucariontes/genética , Humanos , Mermithoidea , Ratones , Ratones SCID , Nematodos/clasificación , Nematodos/genética , Filogenia , Alineación de Secuencia , Análisis de Secuencia de Proteína , Trichuris
15.
J Biol Chem ; 289(43): 29602-13, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25147181

RESUMEN

The Dnmt3a DNA methyltransferase has been shown to bind cooperatively to DNA and to form large multimeric protein/DNA fibers. However, it has also been reported to methylate DNA in a processive manner, a property that is incompatible with protein/DNA fiber formation. We show here that the DNA methylation rate of Dnmt3a increases more than linearly with increasing enzyme concentration on a long DNA substrate, but not on a short 30-mer oligonucleotide substrate. We also show that addition of a catalytically inactive Dnmt3a mutant, which carries an amino acid exchange in the catalytic center, increases the DNA methylation rate by wild type Dnmt3a on the long substrate but not on the short one. In agreement with this finding, preincubation experiments indicate that stable protein/DNA fibers are formed on the long, but not on the short substrate. In addition, methylation experiments with substrates containing one or two CpG sites did not provide evidence for a processive mechanism over a wide range of enzyme concentrations. These data clearly indicate that Dnmt3a binds to DNA in a cooperative reaction and that the formation of stable protein/DNA fibers increases the DNA methylation rate. Fiber formation occurs at low µm concentrations of Dnmt3a, which are in the range of Dnmt3a concentrations in the nucleus of embryonic stem cells. Understanding the mechanism of Dnmt3a is of vital importance because Dnmt3a is a hotspot of somatic cancer mutations one of which has been implicated in changing Dnmt3a processivity.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN/metabolismo , Animales , Secuencia de Bases , Biocatálisis , Núcleo Celular/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Células Madre Embrionarias/enzimología , Fluorescencia , Cinética , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Motivos de Nucleótidos/genética , Unión Proteica , Multimerización de Proteína , Análisis de Secuencia de ADN , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...