Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 245, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314851

RESUMEN

Sustained microglial activation and increased pro-inflammatory signalling cause chronic inflammation and neuronal damage in Alzheimer's disease (AD). Resolution of inflammation follows neutralization of pathogens and is a response to limit damage and promote healing, mediated by pro-resolving lipid mediators (LMs). Since resolution is impaired in AD brains, we decided to test if intranasal administration of pro-resolving LMs in the AppNL-G-F/NL-G-F mouse model for AD could resolve inflammation and ameliorate pathology in the brain. A mixture of the pro-resolving LMs resolvin (Rv) E1, RvD1, RvD2, maresin 1 (MaR1) and neuroprotectin D1 (NPD1) was administered to stimulate their respective receptors. We examined amyloid load, cognition, neuronal network oscillations, glial activation and inflammatory factors. The treatment ameliorated memory deficits accompanied by a restoration of gamma oscillation deficits, together with a dramatic decrease in microglial activation. These findings open potential avenues for therapeutic exploration of pro-resolving LMs in AD, using a non-invasive route.


Asunto(s)
Enfermedad de Alzheimer , Administración Intranasal , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Animales , Inflamación , Ratones
2.
Acta Neuropathol Commun ; 9(1): 116, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187579

RESUMEN

Sustained brain chronic inflammation in Alzheimer's disease (AD) includes glial cell activation, an increase in cytokines and chemokines, and lipid mediators (LMs), concomitant with decreased pro-homeostatic mediators. The inflammatory response at the onset of pathology engages activation of pro-resolving, pro-homeostatic LMs followed by a gradual decrease. We used an APP knock-in (App KI) AD mouse that accumulates ß-amyloid (Aß) and presents cognitive deficits (at 2 and 6 months of age, respectively) to investigate LMs, their precursors, biosynthetic enzymes and receptors, glial activation, and inflammatory proteins in the cerebral cortex and hippocampus at 2-, 4-, 8- and 18-month-old in comparison with wild-type (WT) mice. We used LC-mass-spectrometry and MALDI molecular imaging to analyze LMs and phospholipids, and immunochemistry for proteins. Our results revealed an age-specific lipid and cytokine profile, and glial activation in the App KI mice. Despite an early onset of Aß pathology, pro-inflammatory and pro-resolving LMs were prominently increased only in the oldest age group. Furthermore, the LM biosynthetic enzymes increased, and their receptor expression decreased in the aged App KI mice. Arachidonic acid (AA)-containing phospholipid molecular species were elevated, correlating with decreased cPLA2 activity. MALDI molecular imaging depicted differential distribution of phospholipids according to genotype in hippocampal layers. Brain histology disclosed increased microglia proliferation starting from young age in the App KI mice, while astrocyte numbers were enhanced in older ages. Our results demonstrate that the brain lipidome is modified preferentially during aging as compared to amyloid pathology in the model studied here. However, alterations in phospholipids signal early pathological changes in membrane composition.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Encéfalo/patología , Fosfolípidos/metabolismo , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
Curr Alzheimer Res ; 18(2): 157-170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33784960

RESUMEN

BACKGROUND: Alzheimer's disease (AD) develops into dementia after several years, and subjective cognitive impairment (SCI) and mild cognitive impairment (MCI) are used as intermediary diagnoses of increasing severity. Inflammation is an important part of AD pathology and provides potential novel biomarkers and treatment targets. OBJECTIVE: To identify novel potential biomarkers of AD in cerebrospinal fluid (CSF) and create a molecular pattern of inflammatory factors providing differentiation between AD and SCI. METHODS: We analyzed 43 inflammatory-related mediators in CSF samples from a cohort of SCI and AD cases vetted for confounding factors (Training cohort). Using multivariate analysis (MVA), a model for discrimination between SCI and AD was produced, which we then applied to a larger nonvetted cohort (named Test cohort). The data were analyzed for factors showing differences between diagnostic groups and factors that differed between the vetted and non-vetted cohorts. The relationship of the factors to the agreement between model and clinical diagnosis was investigated. RESULTS: A good MVA model able to discriminate AD from SCI without including tangle and plaque biomarkers was produced from the Training cohort. The model showed 50% agreement with clinical diagnosis in the Test cohort. Comparison of the cohorts indicated different patterns of factors distinguishing SCI from AD. As an example, soluble interleukin (IL)-6Rα showed lower levels in AD cases in the Training cohort, whereas placental growth factor (PlGF) and serum amyloid A (SAA) levels were higher in AD cases of the Test cohort. The levels of p-tau were also higher in the Training cohort. CONCLUSION: This study provides new knowledge regarding the involvement of inflammation in AD by indicating different patterns of factors in CSF depending on whether potential confounding comorbidities are present or not, and presents sIL-6Rα as a potential new biomarker for improved diagnosis of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva/diagnóstico , Comorbilidad , Inflamación , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Amiloide/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Proteínas tau
4.
Brain Pathol ; 30(3): 614-640, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31912564

RESUMEN

Neuroinflammation is a key element of AD pathology and conceivably a result of a disturbed resolution. Resolution of inflammation is an active process which is strictly orchestrated following the acute inflammatory response after removal of the inflammatory stimuli. Acute inflammation is actively terminated by specialized pro-resolving mediators (SPMs) thereby promoting healing and return to homeostasis. Failed resolution may contribute to persistent neuroinflammation and aggravate AD pathology. BLT1 (leukotriene B4 receptor) and ChemR23 (chemerin receptor 23) are receptors for the SPM resolvin (Rv) E1 and are important clinical targets for ending inflammation. In AD, the levels of SPMs are decreased, and pro-inflammatory mediators are increased. In the current study, the distribution of BLT1 and ChemR23 receptors in control brains and in AD as well as correlations with AD pathology was examined for the first time. BLT1 and ChemR23 were analyzed in different regions of post-mortem human brain from cases with AD, early-onset AD and mild cognitive impairment (MCI) and healthy controls, using western blotting and immunohistochemistry. BLT1 and ChemR23 were detected in neurons and glial cells in all examined regions of the human brain, with markedly higher levels in AD than in controls. The receptor levels correlated with the density of staining for the inflammation markers HLA-DR and YKL-40 for microglia and astrocytes, respectively, and elevated staining coincided with high Braak stages in AD. The relative staining densities of these receptors were higher in the basal forebrain, cingulate gyrus and hippocampal regions compared to the cerebellum and frontal cortex (BA46). In conclusion, alterations in the expression of the resolution receptor BLT1 in AD have not been reported previously and the changes in both BLT1 and ChemR23 suggest a disturbed resolution pathway in several regions of the AD brain that may play a role in disease pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Receptores de Quimiocina/metabolismo , Receptores de Leucotrieno B4/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/patología , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , Neuronas/patología
5.
Mol Cell Proteomics ; 19(1): 128-141, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31699905

RESUMEN

Synaptic dysfunction is an early pathogenic event in Alzheimer disease (AD) that contributes to network disturbances and cognitive decline. Some synapses are more vulnerable than others, including the synapses of the perforant path, which provides the main excitatory input to the hippocampus. To elucidate the molecular mechanisms underlying the dysfunction of these synapses, we performed an explorative proteomic study of the dentate terminal zone of the perforant path. The outer two-thirds of the molecular layer of the dentate gyrus, where the perforant path synapses are located, was microdissected from five subjects with AD and five controls. The microdissected tissues were dissolved and digested by trypsin. Peptides from each sample were labeled with different isobaric tags, pooled together and pre-fractionated into 72 fractions by high-resolution isoelectric focusing. Each fraction was then analyzed by liquid chromatography-mass spectrometry. We quantified the relative expression levels of 7322 proteins, whereof 724 showed significantly altered levels in AD. Our comprehensive data analysis using enrichment and pathway analyses strongly indicated that presynaptic signaling, such as exocytosis and synaptic vesicle cycle processes, is severely disturbed in this area in AD, whereas postsynaptic proteins remained unchanged. Among the significantly altered proteins, we selected three of the most downregulated synaptic proteins; complexin-1, complexin-2 and synaptogyrin-1, for further validation, using a new cohort consisting of six AD and eight control cases. Semi-quantitative analysis of immunohistochemical staining confirmed decreased levels of complexin-1, complexin-2 and synaptogyrin-1 in the outer two-thirds of the molecular layer of the dentate gyrus in AD. Our in-depth proteomic analysis provides extensive knowledge on the potential molecular mechanism underlying synaptic dysfunction related to AD and supports that presynaptic alterations are more important than postsynaptic changes in early stages of the disease. The specific synaptic proteins identified could potentially be targeted to halt synaptic dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Giro Dentado/patología , Vía Perforante/patología , Proteínas/metabolismo , Proteoma , Sinapsis/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Estudios de Casos y Controles , Estudios de Cohortes , Giro Dentado/metabolismo , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , Neuronas/patología , Vía Perforante/metabolismo , Proteómica/métodos , Sinapsis/metabolismo , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...