RESUMEN
Health monitoring systems (HMSs) capture physiological measurements through biosensors (sensing), obtain significant properties and measures from the output signal (perceiving), use algorithms for data analysis (reasoning), and trigger warnings or alarms (acting) when an emergency occurs. These systems have the potential to enhance health care delivery in different application domains, showing promising benefits for health diagnosis, early symptom detection, disease prediction, among others. However, the implementation of HMS presents challenges for sensing, perceiving, reasoning, and acting based on monitored data, mainly when data processing should be performed in real time. Thus, the quality of these diagnoses relies heavily on the data and data analysis methods applied. Data mining techniques have been broadly investigated in health systems; however, it is not clear what real-time data analysis techniques are best suited for each context. This work carries out a search in five scientific electronic databases to identify recent studies that investigated HMS using real-time data analysis techniques. Thirty-six research studies were selected after screening 2,822 works. Applied data analysis methods, application domains, utilized sensors, physiological parameters, extracted features, claimed benefits, limitations, datasets used, and published results were described, compared and analyzed. The findings indicate that machine learning methods are trending in such studies. There is no universal solution for all health domains; however, support vector machines are a predominant method. Among the application domains, cardiovascular disease is the most investigated. Most reviewed studies reported improvements in performing data mining tasks or operational modes of solutions. Although studies tested algorithms and presented promising results, those are particular for each experiment. This review gives a comprehensive overview of HMS real-time data analysis and points to directions for future research.
Asunto(s)
Análisis de Datos , Aprendizaje Automático , Algoritmos , Minería de Datos/métodos , Monitoreo FisiológicoRESUMEN
Due to the COVID-19 pandemic, health services around the globe are struggling. An effective system for monitoring patients can improve healthcare delivery by avoiding in-person contacts, enabling early-detection of severe cases, and remotely assessing patients' status. Internet of Things (IoT) technologies have been used for monitoring patients' health with wireless wearable sensors in different scenarios and medical conditions, such as noncommunicable and infectious diseases. Combining IoT-related technologies with early-warning scores (EWS) commonly utilized in infirmaries has the potential to enhance health services delivery significantly. Specifically, the NEWS-2 has been showing remarkable results in detecting the health deterioration of COVID-19 patients. Although the literature presents several approaches for remote monitoring, none of these studies proposes a customized, complete, and integrated architecture that uses an effective early-detection mechanism for COVID-19 and that is flexible enough to be used in hospital wards and at home. Therefore, this article's objective is to present a comprehensive IoT-based conceptual architecture that addresses the key requirements of scalability, interoperability, network dynamics, context discovery, reliability, and privacy in the context of remote health monitoring of COVID-19 patients in hospitals and at home. Since remote monitoring of patients at home (essential during a pandemic) can engender trust issues regarding secure and ethical data collection, a consent management module was incorporated into our architecture to provide transparency and ensure data privacy. Further, the article details mechanisms for supporting a configurable and adaptable scoring system embedded in wearable devices to increase usefulness and flexibility for health care professions working with EWS.
RESUMEN
Traditionally, mental health specialists monitor their patients' social behavior by applying subjective self-report questionnaires in face-to-face meetings. Usually, the application of the self-report questionnaire is limited by cognitive biases (e.g., memory bias and social desirability). As an alternative, we present a solution to detect context-aware sociability patterns and behavioral changes based on social situations inferred from ubiquitous device data. This solution does not focus on the diagnosis of mental states, but works on identifying situations of interest to specialized professionals. The proposed solution consists of an algorithm based on frequent pattern mining and complex event processing to detect periods of the day in which the individual usually socializes. Social routine recognition is performed under different context conditions to differentiate abnormal social behaviors from the variation of usual social habits. The proposed solution also can detect abnormal behavior and routine changes. This solution uses fuzzy logic to model the knowledge of the mental health specialist necessary to identify the occurrence of behavioral change. Evaluation results show that the prediction performance of the identified context-aware sociability patterns has strong positive relation (Pearson's correlation coefficient >70%) with individuals' social routine. Finally, the evaluation conducted recognized that the proposed solution leading to the identification of abnormal social behaviors and social routine changes consistently.
Asunto(s)
Personal de Salud , Salud Mental , Conducta Social , Humanos , Encuestas y CuestionariosRESUMEN
Traditionally, the process of monitoring and evaluating social behavior related to mental health has based on self-reported information, which is limited by the subjective character of responses and various cognitive biases. Today, however, there is a growing amount of studies that have provided methods to objectively monitor social behavior through ubiquitous devices and have used this information to support mental health services. In this paper, we present a Systematic Literature Review (SLR) to identify, analyze and characterize the state of the art about the use of ubiquitous devices to monitor users' social behavior focused on mental health. For this purpose, we performed an exhaustive literature search on the six main digital libraries. A screening process was conducted on 160 peer-reviewed publications by applying suitable selection criteria to define the appropriate studies to the scope of this SLR. Next, 20 selected studies were forwarded to the data extraction phase. From an analysis of the selected studies, we recognized the types of social situations identified, the process of transforming contextual data into social situations, the use of social situation awareness to support mental health monitoring, and the methods used to evaluate proposed solutions. Additionally, we identified the main trends presented by this research area, as well as open questions and perspectives for future research. Results of this SLR showed that social situation-aware ubiquitous systems represent promising assistance tools for patients and mental health professionals. However, studies still present limitations in methodological rigor and restrictions in experiments, and solutions proposed by them have limitations to be overcome.
Asunto(s)
Servicios de Salud Mental , Salud Mental , Concienciación , Personal de Salud , Humanos , Conducta SocialRESUMEN
Current mobile devices allow the execution of sophisticated applications with the capacity for identifying the user situation, which can be helpful in treatments of mental disorders. In this paper, we present SituMan, a solution that provides situation awareness to MoodBuster, an ecological momentary assessment and intervention mobile application used to request self-assessments from patients in depression treatments. SituMan has a fuzzy inference engine to identify patient situations using context data gathered from the sensors embedded in mobile devices. Situations are specified jointly by the patient and mental health professional, and they can represent the patient's daily routine (e.g., "studying", "at work", "working out"). MoodBuster requests mental status self-assessments from patients at adequate moments using situation awareness. In addition, SituMan saves and displays patient situations in a summary, delivering them for consultation by mental health professionals. A first experimental evaluation was performed to assess the user satisfaction with the approaches to define and identify situations. This experiment showed that SituMan was well evaluated in both criteria. A second experiment was performed to assess the accuracy of the fuzzy engine to infer situations. Results from the second experiment showed that the fuzzy inference engine has a good accuracy to identify situations.
Asunto(s)
Salud Mental , Concienciación , Humanos , Trastornos Mentales , Aplicaciones MóvilesRESUMEN
Context aware systems are able to adapt their behavior according to the environment in which the user is. They can be integrated into an Internet of Things (IoT) infrastructure, allowing a better perception of the user's physical environment by collecting context data from sensors embedded in devices known as smart objects. An IoT extension called the Internet of Mobile Things (IoMT) suggests new scenarios in which smart objects and IoT gateways can move autonomously or be moved easily. In a comprehensive view, Quality of Context (QoC) is a term that can express quality requirements of context aware applications. These requirements can be those related to the quality of information provided by the sensors (e.g., accuracy, resolution, age, validity time) or those referring to the quality of the data distribution service (e.g, reliability, delay, delivery time). Some functionalities of context aware applications and/or decision-making processes of these applications and their users depend on the level of quality of context available, which tend to vary over time for various reasons. Reviewing the literature, it is possible to verify that the quality of context support provided by IoT-oriented middleware systems still has limitations in relation to at least four relevant aspects: (i) quality of context provisioning; (ii) quality of context monitoring; (iii) support for heterogeneous device and technology management; (iv) support for reliable data delivery in mobility scenarios. This paper presents two main contributions: (i) a state-of-the-art survey specifically aimed at analyzing the middleware with quality of context support and; (ii) a new middleware with comprehensive quality of context support for Internet of Things Applications. The proposed middleware was evaluated and the results are presented and discussed in this article, which also shows a case study involving the development of a mobile remote patient monitoring application that was developed using the proposed middleware. This case study highlights how middleware components were used to meet the quality of context requirements of the application. In addition, the proposed middleware was compared to other solutions in the literature.