RESUMEN
Cancer cell clusters have a higher capacity for metastasis than single cells, suggesting cancer cell clusters have biological properties different from those of single cells. The nature of de novo cancer cell clusters that are newly formed from tumor masses is largely unknown. Herein, we generated small cell clusters from colorectal cancer organoids and tracked the growth patterns of the clusters up to four cells. Growth patterns were classified into actively growing and poorly growing spheroids (PG). Notch signaling was robustly activated in small clusters immediately after dissociation, and Notch signaling inhibition markedly increased the proportion of PG spheroids. Only a limited number of PG spheroids grew under growth-permissive conditions in vitro, but xenograft tumors derived from Notch inhibited clusters showed growth rates comparable to those of untreated spheroids. Thus, de novo clusters are composed of cells with interchangeable growth fates, which are regulated in a context-dependent manner by Notch signaling.
RESUMEN
Malignant tumors are characterized by a hypoxic microenvironment, and metabolic reprogramming is necessary to ensure energy production and oxidative stress resistance. Although the microenvironmental properties of tumors vary under acute and chronic hypoxia, studies on chronic hypoxia-induced metabolic changes are limited. In the present study, we performed a comprehensive metabolic analysis in a chronic hypoxia model using colorectal cancer (CRC) organoids, and identified an amino acid supply system through the γ-glutamyl cycle, a glutathione recycling pathway. We analyzed the metabolic changes caused by hypoxia over time and observed that chronic hypoxia resulted in an increase in 5-oxoproline and a decrease in oxidized glutathione (GSSG) compared to acute hypoxia. These findings suggest that chronic hypoxia induces metabolic changes in the γ-glutamyl cycle. Moreover, inhibition of the γ-glutamyl cycle via γ-glutamyl cyclotransferase (GGCT) and γ-glutamyl transferase 1 (GGT1) knockdown significantly reversed chronic hypoxia-induced upregulation of 5-oxoproline and several amino acids. Notably, GGT1 knockdown downregulated the intracellular levels of γ-glutamyl amino acids. Conclusively, these results indicate that the γ-glutamyl cycle serves as an amino acid supply system in CRC under chronic hypoxia, which provides fresh insight into cancer metabolism under chronic hypoxia.
Asunto(s)
Aminoácidos , Neoplasias Colorrectales , Organoides , gamma-Glutamiltransferasa , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Organoides/metabolismo , Organoides/patología , gamma-Glutamiltransferasa/metabolismo , Aminoácidos/metabolismo , Hipoxia de la Célula , Microambiente Tumoral , Glutatión/metabolismo , Hipoxia/metabolismo , Hipoxia Tumoral , gamma-Glutamilciclotransferasa/metabolismo , gamma-Glutamilciclotransferasa/genéticaRESUMEN
OBJECTIVE: To determine whether a minimal intervention based on the data envelopment analysis (DEA)-identified efficiency score effectively prevents hypertension. DESIGN: Randomised controlled trial. SETTING: Takahata town (Yamagata, Japan). PARTICIPANTS: Residents aged 40-74 years belonged to the information provision group for specific health guidance. Participants with a blood pressure ≥140/90 mm Hg, those taking antihypertensive medication, or those with a history of cardiac diseases were excluded. Participants were consecutively assigned based on their health check-up visit at a single centre from September 2019 to November 2020 and were followed up at the check-up in the following year, until 3 December 2021. INTERVENTION: A targeted approach using minimal intervention. Target was identified using DEA and 50% of participants with higher risk were targeted. The intervention was notifying the results of their risk of hypertension according to the efficiency score obtained by the DEA. PRIMARY OUTCOME MEASURES: A reduction in the proportion of participants who developed hypertension (≥140/90 mm Hg or taking antihypertensive medication). RESULTS: A total of 495 eligible participants were randomised, and follow-up data were available for 218 and 227 participants in the intervention and control groups, respectively. The risk difference for the primary outcome was 0.2% (95% CI -7.3 to 6.9) with 38/218 (17.4%) and 40/227 (17.6%) events in the intervention and control group, respectively (Pearson's χ2 test, p=0.880). The adjusted OR of the effect of the intervention was 0.95 (95% CI 0.56 to 1.61, p=0.843), and that of the efficiency score (10-rank increase) was 0.81 (95% CI 0.74 to 0.89, p<0.0001). CONCLUSIONS: Minimal intervention to a high-risk population stratified by DEA was not effective in reducing the onset of hypertension in 1 year. The efficiency score could predict the risk of hypertension. TRIAL REGISTRATION NUMBER: UMIN000037883.
Asunto(s)
Antihipertensivos , Hipertensión , Humanos , Antihipertensivos/uso terapéutico , Japón , Hipertensión/tratamiento farmacológico , Hipertensión/prevención & control , Presión Sanguínea/fisiología , Factores de RiesgoRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic that resulted in more than 6-million deaths worldwide. The virus encodes several non-structural proteins (Nsps) that contain elements capable of disrupting cellular processes. Among these Nsp proteins, Nsp3 contains macrodomains, e.g., Mac1, Mac2, Mac3, with potential effects on host cells. Mac1 has been shown to increase SARS-CoV-2 virulence and disrupt ADP-ribosylation pathways in mammalian cells. ADP-ribosylation results from the transfer of the ADP-ribose moiety of NAD + to various acceptors, e.g., proteins, DNA, RNA, contributing on a cell's biological processes. ADP-ribosylation is the mechanism of action of bacterial toxins, e.g., Pseudomonas toxins, diphtheria toxin that disrupt protein biosynthetic and signaling pathways. On the other hand, some viral macrodomains cleavage ADP-ribose-acceptor bond, generating free ADP-ribose. By this reaction, the macrodomain-containing proteins interfere ADP-ribose homeostasis in host cells. Here, we examined potential hydrolytic activities of SARS-CoV-2 Mac1, 2, and 3 on substrates containing ADP-ribose. Mac1 cleaved α-NAD + , but not ß-NAD + , consistent with stereospecificity at the C-1" bond. In contrast to ARH1 and ARH3, Mac1 did not require Mg 2+ for optimal activity. Mac1 also hydrolyzed O -acetyl-ADP-ribose and ADP-ribose-1"-phosphat, but not Mac2 and Mac3. However, Mac1 did not cleave α-ADP-ribose-(arginine) and ADP-ribose-(serine)-histone H3 peptide, suggesting that Mac1 hydrolyzes ADP-ribose attached to O- and N-linked functional groups, with specificity at the catalytic site in the ADP-ribose moiety. We conclude that SARS-CoV-2 Mac1 may exert anti-viral activity by reversing host-mediated ADP-ribosylation. New insights on Nsp3 activities may shed light on potential SARS-CoV-2 therapeutic targets. IMPORTANCE: SARS-CoV-2, the virus responsible for COVID-19, encodes 3 macrodomain-containing proteins, e.g., Mac1, Mac2, Mac3, within non-structural proteins 3 (Nsp3). Mac1 was shown previously to hydrolyze ADP-ribose-phosphate. Inactivation of Mac1 reduced viral proliferation. Here we report that Mac1, but not Mac2 and Mac3, has multiple activities, i.e., Mac1 hydrolyzed. α-NAD + and O -acetyl-ADP-ribose. However, Mac1 did not hydrolyze ß-NAD + , ADP-ribose-serine on a histone 3 peptide (aa1-21), and ADP-ribose-arginine, exhibiting substrate selectivity. These data suggest that Mac1 may have multi-function as a α-NAD + consumer for viral replication and a disruptor of host-mediated ADP-ribosylation pathways. Understanding Mac1's mechanisms of action is important to provide possible therapeutic targets for COVID-19.
RESUMEN
Aims: Patients with ADP-ribose-acceptor hydrolase 3 ( ARH3 ) deficiency exhibit stress-induced childhood-onset neurodegeneration with ataxia and seizures (CONDSIAS). ARH3 degrades protein-linked poly(ADP- ribose) (PAR) synthesized by poly(ADP-ribose)polymerase (PARP)-1 during oxidative stress, leading to cleavage of the ADP-ribose linked to protein. ARH3 deficiency leads to excess accumulation of PAR, resulting in PAR-dependent cell death or parthanatos. Approximately one-third of patients with homozygous mutant ARH3 die from cardiac arrest, which has been described as neurogenic, suggesting that ARH3 may play an important role in maintaining myocardial function. To address this question, cardiac function was monitored in Arh3 -knockout (KO) and - heterozygous (HT) mice. Methods and results: Arh3 -KO male mice displayed cardiac hypertrophy by histopathology and decreased cardiac contractility assessed by MRI. In addition, both genders of Arh3 -KO and -HT mice showed decreased cardiac contractility by dobutamine stress test assessed by echocardiography. A direct role of ARH3 on myocardial function was seen with a Langendorff-perfused isolated heart model . Arh3 -KO male mouse hearts showed decreased post-ischemic rate pressure products, increased size of ischemia-reperfusion (IR) infarcts, and elevated PAR levels. Consistently, in vivo IR injury showed enhanced infarct size in Arh3 -KO mice in both genders. In addition, Arh3 -HT male mice showed increased size of in vivo IR infarcts. Treatment with an FDA-approved PARP inhibitor, rucaparib, improved cardiac contractility during dobutamine-induced stress and exhibited reduced size of in vivo IR infarcts. To understand better the role of ARH3, CRISPR-Cas9 was used to generate different Arh3 genotypes of myoblasts and myotubes. Incubation with H2O2 decreased viability of Arh3 -KO and -HT myoblasts and myotubes, resulting in PAR-dependent cell death that was reduced by PARP inhibitors or by transfection with the Arh3 gene. Conclusion: ARH3 regulates PAR homeostasis in myocardium to preserve function and protect against oxidative stress; PARP inhibitors reduce the myocardial dysfunction seen with Arh3 mutations.
RESUMEN
Arginine-specific mono-ADP-ribosylation is a reversible post-translational modification; arginine-specific, cholera toxin-like mono-ADP-ribosyltransferases (ARTCs) transfer ADP-ribose from NAD + to arginine, followed by cleavage of ADP-ribose-(arginine)protein bond by ADP-ribosylarginine hydrolase 1 (ARH1), generating unmodified (arginine)protein. ARTC1 has been shown to enhance tumorigenicity as does Arh1 deficiency. In this study, Artc1 -KO and Artc1/Arh1 -double-KO mice showed decreased spontaneous tumorigenesis and increased age-dependent, multi-organ inflammation with upregulation of pro-inflammatory cytokine TNF- α . In a xenograft model using tumorigenic Arh1 -KO mouse embryonic fibroblasts (MEFs), tumorigenicity was decreased in Artc1 -KO and heterozygous recipient mice, with tumor infiltration by CD8 + T cells and macrophages, leading to necroptosis, suggesting that ARTC1 promotes the tumor microenvironment. Furthermore, Artc1/Arh1 -double-KO MEFs showed decreased tumorigenesis in nude mice, showing that tumor cells as well as tumor microenvironment require ARTC1. By echocardiography and MRI, Artc1 -KO and heterozygous mice showed male-specific, reduced myocardial contractility. Furthermore, Artc1 -KO male hearts exhibited enhanced susceptibility to myocardial ischemia-reperfusion-induced injury with increased receptor-interacting protein kinase 3 (RIP3) protein levels compared to WT mice, suggesting that ARTC1 suppresses necroptosis. Overall survival rate of Artc1 -KO was less than their Artc1 -WT counterparts, primarily due to enhanced immune response and inflammation. Thus, anti-ARTC1 agents may reduce tumorigenesis but may increase multi-organ inflammation and decrease cardiac contractility.
RESUMEN
ADP-ribosylation is a reversible reaction with ADP-ribosyltransferases catalyzing the forward reaction and ADP-ribose-acceptor hydrolases (ARHs) hydrolyzing the ADP-ribose acceptor bond. ARH2 is a member of the 39-kDa ARH family (ARH1-3), which is expressed in heart and skeletal muscle. ARH2 failed to exhibit any in vitro enzymatic activity. To determine its possible in vivo activities, Arh2 -knockout (KO) and - heterozygous (Het) mice were generated using CRISPR-Cas9. Arh2 -KO mice exhibited decreased cardiac contractility by MRI, echocardiography and dobutamine stress with cardiomegaly and abnormal motor function. Arh2 -Het mice showed results similar to those seen in Arh2 -KO mice except for cardiomegaly. Arh2 -KO and -Het mice and mouse embryonic fibroblasts (MEFs) developed spontaneous tumors and subcutaneous tumors in nude mice. We identified 13 mutations in Arh2 -Het MEFs and heterozygous tumors, corresponding to human ARH2 mutations in cancers obtained from COSMIC. Of interest, the L116R mutation in Arh2 gene plays a critical role in aggressive tumorigenesis in nude mice, corresponding to human ARH2 mutations in stomach adenocarcinoma. Both genders of Arh2 -KO and -Het mice showed increased unexpectedly deaths and decreased survival rate during a 24-month observation, caused by tumor, inflammation, non-inflammation (e.g., cardiomegaly, dental dysplasia), and congenital diseases. Thus, Arh2 plays a pivotal role in cardiac function, tumorigenesis, inflammation, and overall survival.
RESUMEN
The ARH family of ADP-ribose-acceptor hydrolases consists of three 39-kDa members (ARH1-3), with similarities in amino acid sequence. ARH1 was identified based on its ability to cleave ADP-ribosyl-arginine synthesized by cholera toxin. Mammalian ADP-ribosyltransferases (ARTCs) mimicked the toxin reaction, with ARTC1 catalyzing the synthesis of ADP-ribosyl-arginine. ADP-ribosylation of arginine was stereospecific, with ß-NAD+ as substrate and, α-anomeric ADP-ribose-arginine the reaction product. ARH1 hydrolyzed α-ADP-ribose-arginine, in addition to α-NAD+ and O-acetyl-ADP-ribose. Thus, ADP-ribose attached to oxygen-containing or nitrogen-containing functional groups was a substrate. Arh1 heterozygous and knockout (KO) mice developed tumors. Arh1-KO mice showed decreased cardiac contractility and developed myocardial fibrosis. In addition to Arh1-KO mice showed increased ADP-ribosylation of tripartite motif-containing protein 72 (TRIM72), a membrane-repair protein. ARH3 cleaved ADP-ribose from ends of the poly(ADP-ribose) (PAR) chain and released the terminal ADP-ribose attached to (serine)protein. ARH3 also hydrolyzed α-NAD+ and O-acetyl-ADP-ribose. Incubation of Arh3-KO cells with H2O2 resulted in activation of poly-ADP-ribose polymerase (PARP)-1, followed by increased nuclear PAR, increased cytoplasmic PAR, leading to release of Apoptosis Inducing Factor (AIF) from mitochondria. AIF, following nuclear translocation, stimulated endonucleases, resulting in cell death by Parthanatos. Human ARH3-deficiency is autosomal recessive, rare, and characterized by neurodegeneration and early death. Arh3-KO mice developed increased brain infarction following ischemia-reperfusion injury, which was reduced by PARP inhibitors. Similarly, PARP inhibitors improved survival of Arh3-KO cells treated with H2O2. ARH2 protein did not show activity in the in vitro assays described above for ARH1 and ARH3. ARH2 has a restricted tissue distribution, with primary involvement of cardiac and skeletal muscle. Overall, the ARH family has unique functions in biological processes and different enzymatic activities.
Asunto(s)
Adenosina Difosfato Ribosa , O-Acetil-ADP-Ribosa , Animales , Humanos , Ratones , Adenosina Difosfato Ribosa/metabolismo , Factor Inductor de la Apoptosis/metabolismo , Arginina , Glicósido Hidrolasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Hidrólisis , Ratones Noqueados , NAD/metabolismo , Inhibidores de Poli(ADP-Ribosa) PolimerasasRESUMEN
PURPOSE: A tailored approach to individual risk factors for developing lifestyle-related diseases would help induce behavioral changes toward intervention acceptability. The addition of preventive healthcare programs to nationwide specific health guidance in Japan is adapted in a given region. PATIENTS AND METHODS: We conducted a prospective parallel-group comparison study on 195 eligible residents from Takahata, Japan, with a high risk of lifestyle-related diseases from 2014 to 2017 to examine whether such an intervention could improve the body mass index (BMI) and estimated glomerular filtration rate (eGFR). RESULTS: Of the 195 enrolled residents, 117 were assigned to the control group and 78 to the intervention group. They were ≤65 years old and had a BMI ≥25 kg/m2 and an eGFR ≤90 mL/kg/1.73 m2. We conducted certain interventions for each group, including additional blood testing, regular health guidance, and specific health guidance. After one year, neither BMI (intervention: 26.7 ± 2.17 kg/m2 vs control: 27.3 ± 2.12 kg/m2, p = 0.076) nor eGFR (intervention: 72.2 ± 11.1 mL/kg/1.73 m2 vs control: 73.1 ± 10.5 mL/kg/1.73 m2, p = 0.608) differed significantly between groups. However, after three years, the BMI in the intervention group (26.4 ± 2.05 kg/m2) was significantly reduced compared to that in the control group (27.4 ± 2.26 kg/m2; p = 0.005). CONCLUSION: The additional interventions might have contributed to a reduction in metabolic syndrome. TRIAL REGISTRATION: This study was registered in the UMIN-Clinical Trials Registry (ID:000013581). More information: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000015868. The registration date was 31/03/2014.
RESUMEN
Small cell neuroendocrine carcinoma (SCNEC) of the uterine cervix is a rare disease with a poor prognosis. The lack of established disease models has hampered therapy development. We generated a panel of cancer tissue-originated spheroid (CTOS) lines derived from SCNEC of the uterine cervix using a method based upon cell-cell contact throughout the preparation and culturing processes. Using 11 CTOS lines, we assessed the sensitivity of various drugs used in clinical practice. Drug sensitivity assays revealed significant heterogeneous inter-CTOS chemosensitivity. Microarray analyses were then performed to identify sensitivity-related gene signatures. Specific gene sets were identified which likely contribute to the sensitivity to the tested drugs. We identified a line (Cerv54) that was exceptionally sensitive to irinotecan. Cerv54 had increased levels of CES1, which catalyzes the conversion of irinotecan to the active form, SN38, although in Cerv54 cells, SN38 was undetectable, CES1 expression and activity were markedly low compared to the liver, and a CES1 inhibitor had no effect on irinotecan sensitivity. These results suggested a novel irinotecan mode of action in Cerv54. Our CTOS lines may be useful for understanding the variation and mechanism of drug sensitivity, contributing to the understanding and development of chemotherapeutic drugs.
Asunto(s)
Antineoplásicos/farmacología , Carcinoma Neuroendocrino/patología , Carcinoma de Células Pequeñas/patología , Resistencia a Antineoplásicos/genética , Organoides/patología , Neoplasias del Cuello Uterino/patología , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/fisiología , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/metabolismo , Carcinoma de Células Pequeñas/genética , Carcinoma de Células Pequeñas/metabolismo , Catálisis , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Femenino , Expresión Génica , Humanos , Irinotecán/metabolismo , Irinotecán/farmacología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismoRESUMEN
Most colorectal cancers (CRCs) are differentiated adenocarcinomas, which maintain expression of both stemness and differentiation markers. This observation suggests that CRC cells could retain a regeneration system of normal cells upon injury. However, the role of stemness in cancer cell regeneration after irradiation is poorly understood. Here, we examined the effect of radiation on growth, stemness, and differentiation in organoids derived from differentiated adenocarcinomas. Following a sublethal dose of irradiation, proliferation and stemness markers, including Wnt target genes, were drastically reduced, but differentiation markers remained. After a static growth phase after high dose of radiation, regrowth foci appeared; these consisted of highly proliferating cells that expressed stem cell markers. Radiosensitivity and the ability to form foci differed among the cancer tissue-originated spheroid (CTOS) lines examined and showed good correlation with in vivo radiation sensitivity. Pre-treating organoids with histone deacetylase inhibitors increased radiation sensitivity; this increase was accompanied by the suppression of Wnt signal-related gene expression. Accordingly, Wnt inhibitors increased organoid radiosensitivity. These results suggested that only a small subset of, but not all, cancer cells with high Wnt activity at the time of irradiation could give rise to foci formation. In conclusion, we established a radiation sensitivity assay using CRC organoids that could provide a novel platform for evaluating the effects of radiosensitizers on differentiated adenocarcinomas in CRC.
Asunto(s)
Adenocarcinoma/patología , Neoplasias Colorrectales/patología , Organoides/crecimiento & desarrollo , Vía de Señalización Wnt , Adenocarcinoma/radioterapia , Animales , Proliferación Celular , Neoplasias Colorrectales/radioterapia , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células Madre Neoplásicas , Organoides/efectos de los fármacos , Organoides/fisiología , Organoides/efectos de la radiación , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Regeneración , Vía de Señalización Wnt/genéticaRESUMEN
Arginine-specific mono-adenosine diphosphate (ADP)-ribosylation is a nicotinamide adenine dinucleotide (NAD)+-dependent, reversible post-translational modification involving the transfer of an ADP-ribose from NAD+ by bacterial toxins and eukaryotic ADP-ribosyltransferases (ARTs) to arginine on an acceptor protein or peptide. ADP-ribosylarginine hydrolase 1 (ARH1) catalyzes the cleavage of the ADP-ribose-arginine bond, regenerating (arginine)protein. Arginine-specific mono-ADP-ribosylation catalyzed by bacterial toxins was first identified as a mechanism of disease pathogenesis. Cholera toxin ADP-ribosylates and activates the α subunit of Gαs, a guanine nucleotide-binding protein that stimulates adenylyl cyclase activity, increasing cyclic adenosine monophosphate (cAMP), and resulting in fluid and electrolyte loss. Arginine-specific mono-ADP-ribosylation in mammalian cells has potential roles in membrane repair, immunity, and cancer. In mammalian tissues, ARH1 is a cytosolic protein that is ubiquitously expressed. ARH1 deficiency increased tumorigenesis in a gender-specific manner. In the myocardium, in response to cellular injury, an arginine-specific mono-ADP-ribosylation cycle, involving ART1 and ARH1, regulated the level and cellular distribution of ADP-ribosylated tripartite motif-containing protein 72 (TRIM72). Confirmed substrates of ARH1 in vivo are Gαs and TRIM72, however, more than a thousand proteins, ADP-ribosylated on arginine, have been identified by proteomic analysis. This review summarizes the current understanding of the properties of ARH1, e.g., bacterial toxin action, myocardial membrane repair following injury, and tumorigenesis.
RESUMEN
Neuroendocrine carcinoma of small cell type (SCNEC) is a rare pathological subtype in cervical cancer, which has a worse prognosis than other histological cell types. Due to its low incidence and the lack of experimental platforms, the molecular characteristics of SCNEC in the cervix remain largely unknown. Using the cancer tissue-originated spheroid (CTOS) method-an ex vivo 3D culture system that preserves the differentiation status of the original tumors-we established a panel of CTOS lines of SCNEC. We demonstrated that xenograft tumors and CTOSs, respectively, exhibited substantial intra-tumor and intra-CTOS variation in the expression levels of chromogranin A (CHGA), a neuroendocrine tumor marker. Since hypoxia affects differentiation in various tumors and in stem cells, we also investigated how hypoxia affected neuroendocrine differentiation of SCNEC of the uterine cervix. In the CTOS line cerv21, hypoxia suppressed expression of the neuroendocrine markers CHGA and synaptophysin (SYP). Flow cytometry analysis using CD99 (a membrane protein marker of SCNEC) revealed decreased CD99 expression in a subset of cells under hypoxic conditions. These expression changes were attenuated by HIF-1α knockdown, and by a Notch inhibitor, suggesting that these molecules played a role in the regulation of neuroendocrine differentiation. The examined SCNEC markers were suppressed under hypoxia in multiple CTOS lines. Overall, our present results indicated that neuroendocrine differentiation in SCNEC of the uterus is a variable phenotype, and that hypoxia may be one of the factors regulating the differentiation status.
Asunto(s)
Carcinoma Neuroendocrino/patología , Carcinoma de Células Pequeñas/patología , Cuello del Útero/patología , Hipoxia Tumoral , Neoplasias del Cuello Uterino/patología , Animales , Desdiferenciación Celular , Femenino , Humanos , Ratones , Células Tumorales CultivadasRESUMEN
Cancer cells are exposed to various stresses in vivo, including hydrodynamic stress (HDS). HDS on cancer cells in the blood stream can influence the metastatic potential. Recent studies revealed that circulating tumor cell clusters are more responsible for metastasis than circulating single cells. Nevertheless, most studies on HDS are based on single cells prepared from established cancer cell lines. Here, we used cancer tissue-originated spheroids (CTOS) as a patient-derived, 3D organoid model to investigate the effect of HDS on cancer cell clusters. We found that HDS induced the growth of cancer cell clusters in a population of colorectal CTOSs. Microarray analyses revealed that the multifunctional protein, Annexin 1 (ANXA1), was upregulated upon HDS exposure. Chemically-induced membrane damage also triggered the expression of ANXA1. A knockdown of ANXA1 revealed that ANXA1 regulated HDS-stimulated growth in colorectal CTOSs. Mechanistically, activating the PI3K/AKT pathway downstream of ANXA1 contributed to the phenotype. These findings demonstrate that HDS induces the growth of cancer cell clusters via ANXA1/PI3K/AKT axis, which helps to elucidate the pro-metastatic feature of circulating cancer cell clusters.
Asunto(s)
Anexina A1/metabolismo , Proliferación Celular , Neoplasias Colorrectales/patología , Hidrodinámica , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estrés Fisiológico , Animales , Neoplasias Colorrectales/metabolismo , Xenoinjertos , Humanos , RatonesRESUMEN
Poly(ADP-ribosyl)ation refers to the covalent attachment of ADP-ribose to protein, generating branched, long chains of ADP-ribose moieties, known as poly(ADP-ribose) (PAR). Poly(ADP-ribose) polymerase 1 (PARP1) is the main polymerase and acceptor of PAR in response to DNA damage. Excessive intracellular PAR accumulation due to PARP1 activation leads cell death in a pathway known as parthanatos. PAR degradation is mainly controlled by poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribose-acceptor hydrolase 3 (ARH3). Our previous results demonstrated that ARH3 confers protection against hydrogen peroxide (H2O2) exposure, by lowering cytosolic and nuclear PAR levels and preventing apoptosis-inducing factor (AIF) nuclear translocation. We identified a family with an ARH3 gene mutation that resulted in a truncated, inactive protein. The 8-year-old proband exhibited a progressive neurodegeneration phenotype. In addition, parthanatos was observed in neurons of the patient's deceased sibling, and an older sibling exhibited a mild behavioral phenotype. Consistent with the previous findings, the patient's fibroblasts and ARH3-deficient mice were more sensitive, respectively, to H2O2 stress and cerebral ischemia/reperfusion-induced PAR accumulation and cell death. Further, PARP1 inhibition alleviated cell death and injury resulting from oxidative stress and ischemia/reperfusion. PARP1 inhibitors may attenuate the progression of neurodegeneration in affected patients with ARH3 deficiency.
Asunto(s)
Glicósido Hidrolasas/genética , Enfermedades Neurodegenerativas/genética , Parthanatos/genética , Poli Adenosina Difosfato Ribosa/metabolismo , Adulto , Animales , Factor Inductor de la Apoptosis/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/citología , Encéfalo/patología , Células Cultivadas , Niño , Preescolar , Daño del ADN/efectos de los fármacos , Daño del ADN/ética , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Fibroblastos , Glicósido Hidrolasas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Parthanatos/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Cultivo Primario de Células , Daño por Reperfusión/complicaciones , Piel/citologíaRESUMEN
Patient-derived cancer organoid culture is an important live material that reflects clinical heterogeneity. However, the limited amount of organoids available for each case as well as the considerable amount of time and cost to expand in vitro makes it impractical to perform high-throughput drug screening using organoid cultures from multiple patients. Here, we report an advanced system for the high-throughput screening of 2427 drugs using the cancer tissue-originated spheroid (CTOS) method. In this system, we apply the CTOS method in an ex vivo platform from xenograft tumors, using machines to handle CTOS and reagents, and testing a CTOS reference panel of multiple CTOS lines for the hit drugs. CTOS passages in xenograft tumors resulted in minimal changes of morphological and genomic status, and xenograft tumor generation efficiently expanded the number of CTOS to evaluate multiple drugs. Our panel of colorectal cancer CTOS lines exhibited diverse sensitivities to the hit compounds, demonstrating the usefulness of this system for investigating highly heterogeneous disease.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Esferoides Celulares/efectos de los fármacos , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Neoplasias Colorrectales/genética , Humanos , Ratones Endogámicos NOD , Ratones SCID , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/patología , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Secuenciación del Exoma , Ensayos Antitumor por Modelo de Xenoinjerto/métodosRESUMEN
The idea of tumor dormancy originated from clinical findings that recurrence of cancer occurs several years or even several decades after surgical resection of the primary tumor. Tumor mass dormancy was proposed as a model, where there is equal balance between increases in the number of cancer cells by proliferation and decreases as a result of cell death. Tumor mass dormancy includes angiogenic dormancy and immune-mediated dormancy. Another emerging type of tumor dormancy is cellular dormancy in which cancer cells are in a quiescent state. Cellular dormancy is induced by cues such as the extracellular matrix environment, metastatic niches, a hypoxic microenvironment, and endoplasmic reticulum stress. Even the oncogenic pathways, on which active cancer cells depend for survival and growth, are suppressed in the dormant state. As tumor dormancy is one of the mechanisms of resistance against various cancer therapies, targeting dormant cancer cells should be considered for future treatment strategies.