Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 45(6): 2831-2834, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30242666

RESUMEN

Syngnathids (pipefishes, seahorses and seadragons) are vulnerable to human-mediated habitat perturbation. The Pacific seaweed pipefish Syngnathus schlegeli has a large distribution in the northwestern Pacific, where deterioration, loss and fragmentation of its seagrass habitat are occurring through coastal development. So far, few studies have been conducted to access the genetic structure and conservation status of S. schlegeli because of the low number of genetic markers currently described. Nineteen polymorphic microsatellite markers were developed for S. schlegeli using next-generation sequencing, and characterized in 32 individuals. The mean number of alleles was 14, with 2-28 alleles per locus. The estimates of observed heterozygosity (HO) and expected heterozygosity (HE) varied depending on the locus, ranging from 0.063 to 1.000, and from 0.062 to 0.969, respectively. Seventeen of the 19 microsatellites conformed to Hardy-Weinberg equilibrium. These new microsatellite markers should provide a wealth of information for studies on conservation genetics and the behavioral ecology of S. schlegeli.


Asunto(s)
Repeticiones de Microsatélite/genética , Smegmamorpha/genética , Alelos , Animales , Frecuencia de los Genes/genética , Sitios Genéticos/genética , Marcadores Genéticos/genética , Genética de Población , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo Genético/genética
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(3 Pt 1): 031918, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17930282

RESUMEN

This paper presents a model of the thermoregulation system of the spadix of skunk cabbage Symplocarpus foetidus which regulates its internal temperature at around 20 degrees C during flowering even when the ambient air temperature drops below freezing. From the temperature responses of the spadix to changing ambient air temperature, we assumed that the thermoregulation system of the spadix is probably one of negative feedback control. The feedback signals are based on the rate of temperature change of the spadix over time. A signal is factored into the biochemical energy generator, and becomes biochemical energy, some of which becomes heat. Comparing our proposed model temperature responses and those of the living spadix, we found good agreement. In the process of engineering the model, the existence of two regulatory pathways in the thermoregulation system was simulated, and our proposed model appears to provide the necessary elements to explain the fundamental mechanism of the thermoregulation system of S. foetidus.


Asunto(s)
Araceae/fisiología , Regulación de la Temperatura Corporal/fisiología , Modelos Biológicos , Simulación por Computador , Retroalimentación Fisiológica/fisiología , Reproducibilidad de los Resultados , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...