Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 7(1): 104, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724655

RESUMEN

Fluorinated amino acids serve as an entry point for establishing new-to-Nature chemistries in biological systems, and novel methods are needed for the selective synthesis of these building blocks. In this study, we focused on the enzymatic synthesis of fluorinated alanine enantiomers to expand fluorine biocatalysis. The alanine dehydrogenase from Vibrio proteolyticus and the diaminopimelate dehydrogenase from Symbiobacterium thermophilum were selected for in vitro production of (R)-3-fluoroalanine and (S)-3-fluoroalanine, respectively, using 3-fluoropyruvate as the substrate. Additionally, we discovered that an alanine racemase from Streptomyces lavendulae, originally selected for setting an alternative enzymatic cascade leading to the production of these non-canonical amino acids, had an unprecedented catalytic efficiency in ß-elimination of fluorine from the monosubstituted fluoroalanine. The in vitro enzymatic cascade based on the dehydrogenases of V. proteolyticus and S. thermophilum included a cofactor recycling system, whereby a formate dehydrogenase from Pseudomonas sp. 101 (either native or engineered) coupled formate oxidation to NAD(P)H formation. Under these conditions, the reaction yields for (R)-3-fluoroalanine and (S)-3-fluoroalanine reached >85% on the fluorinated substrate and proceeded with complete enantiomeric excess. The selected dehydrogenases also catalyzed the conversion of trifluoropyruvate into trifluorinated alanine as a first-case example of fluorine biocatalysis with amino acids carrying a trifluoromethyl group.

2.
Nature ; 629(8010): 92-97, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503346

RESUMEN

Ammonia is crucial as a fertilizer and in the chemical industry and is considered to be a carbon-free fuel1. Ammonia electrosynthesis from nitrogen under ambient conditions offers an attractive alternative to the Haber-Bosch process2,3, and lithium-mediated nitrogen reduction represents a promising approach to continuous-flow ammonia electrosynthesis, coupling nitrogen reduction with hydrogen oxidation4. However, tetrahydrofuran, which is commonly used as a solvent, impedes long-term ammonia production owing to polymerization and volatility problems. Here we show that a chain-ether-based electrolyte enables long-term continuous ammonia synthesis. We find that a chain-ether-based solvent exhibits non-polymerization properties and a high boiling point (162 °C) and forms a compact solid-electrolyte interphase layer on the gas diffusion electrode, facilitating ammonia release in the gas phase and ensuring electrolyte stability. We demonstrate 300 h of continuous operation in a flow electrolyser with a 25 cm2 electrode at 1 bar pressure and room temperature, and achieve a current-to-ammonia efficiency of 64 ± 1% with a gas-phase ammonia content of approximately 98%. Our results highlight the crucial role of the solvent in long-term continuous ammonia synthesis.

3.
Nat Mater ; 23(1): 101-107, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37884670

RESUMEN

Ammonia (NH3) is a key commodity chemical for the agricultural, textile and pharmaceutical industries, but its production via the Haber-Bosch process is carbon-intensive and centralized. Alternatively, an electrochemical method could enable decentralized, ambient NH3 production that can be paired with renewable energy. The first verified electrochemical method for NH3 synthesis was a process mediated by lithium (Li) in organic electrolytes. So far, however, elements other than Li remain unexplored in this process for potential benefits in efficiency, reaction rates, device design, abundance and stability. In our demonstration of a Li-free system, we found that calcium can mediate the reduction of nitrogen for NH3 synthesis. We verified the calcium-mediated process using a rigorous protocol and achieved an NH3 Faradaic efficiency of 40 ± 2% using calcium tetrakis(hexafluoroisopropyloxy)borate (Ca[B(hfip)4]2) as the electrolyte. Our results offer the possibility of using abundant materials for the electrochemical production of NH3, a critical chemical precursor and promising energy vector.

4.
ACS Omega ; 8(48): 46300-46308, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075805

RESUMEN

Family 1 glycosyltransferases (GT1s, UGTs) form natural product glycosides with exquisite control over regio- and stereoselectivity, representing attractive biotechnological targets. However, regioselectivity cannot be predicted and large-scale activity assessment efforts of UGTs are commonly performed via mass spectrometry or indirect assays that are blind to regioselectivity. Here, we present a large high performance liquid chromatography screening discriminating between regioisomeric products of 40 diverse UGTs (28.6% average pairwise sequence identity) against 32 polyphenols, identifying enzymes able to reach high glycosylation yields (≥90% in 24 h) in 26/32 cases. In reactions with >50% yield, we observed perfect regioselectivity for 47% (75/158) on polyphenols presenting two hydroxyl groups and for 30% (43/143) on polyphenols presenting ≥3 hydroxyl groups. Moreover, we developed a nuclear magnetic resonance-based procedure to identify the site of glycosylation directly on enzymatic mixtures. We further selected seven regiospecific reactions catalyzed by four enzymes on five dihydroxycoumarins. We characterized the four enzymes, showing that temperature optima are functions of the acceptor substrate, varying by up to 20 °C for the same enzyme. Furthermore, we performed short molecular dynamics simulations of 311 ternary complexes (UGT, UDP-Glc, and glycosyl acceptor) to investigate the molecular basis for regioselectivity. Interestingly, it appeared that most UGTs can accommodate acceptors in configurations favorable to the glycosylation of either hydroxyl. In contrast, evaluation of hydroxyl nucleophilicity appeared to be a strong predictor of the hydroxyl predominantly glycosylated by most enzymes.

5.
Chem Sci ; 14(45): 12973-12983, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38023519

RESUMEN

Squalene synthase (SQS) is an essential enzyme in the mevalonate pathway, which controls cholesterol biosynthesis and homeostasis. Although catalytic inhibitors of SQS have been developed, none have been approved for therapeutic use so far. Herein we sought to develop SQS degraders using targeted protein degradation (TPD) to lower overall cellular cholesterol content. We found that KY02111, a small molecule ligand of SQS, selectively causes SQS to degrade in a proteasome-dependent manner. Unexpectedly, compounds based on the same scaffold linked to E3 ligase recruiting ligands led to SQS stabilization. Proteomic analysis found KY02111 to reduce only the levels of SQS, while lipidomic analysis determined that KY02111-induced degradation lowered cellular cholesteryl ester content. Stabilizers shielded SQS from its natural turnover without recruiting their matching E3 ligase or affecting enzymatic target activity. Our work shows that degradation of SQS is possible despite a challenging biological setting and provides the first chemical tools to degrade and stabilize SQS.

6.
ChemSusChem ; 16(22): e202301011, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37681646

RESUMEN

The lithium-mediated nitrogen reduction reaction (Li-NRR) is a promising method for decentralized ammonia synthesis using renewable energy. An organic electrolyte is utilized to combat the competing hydrogen evolution reaction, and lithium is plated to activate the inert N2 molecule. Ethanol is commonly used as a proton shuttle to provide hydrogen to the activated nitrogen. In this study, we investigate the role of ethanol as a proton shuttle in an electrolyte containing tetrahydrofuran and 0.2 M lithium perchlorate. Particularly designed electrochemical experiments show that ethanol is necessary for a good solid-electrolyte interphase but not for the synthesis of ammonia. In addition, electrochemical quartz crystal microbalance (EQCM) demonstrates that the SEI formation at the onset of lithium plating is of specific importance. Chemical batch synthesis of ammonia combined with real-time mass spectrometry confirms that protons can be shuttled from the anode to the cathode by other species even without ethanol. Moreover, it raises questions regarding the electrochemical nature of Li-NRR. Finally, we discuss electrolyte stability and electrochemical electrode potentials, highlighting the role of ethanol on electrolyte degradation.

8.
Plants (Basel) ; 10(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206653

RESUMEN

Mosses from the genus Polytrichum have been shown to contain rare benzonaphthoxanthenones compounds, and many of these have been reported to have important biological activities. In this study, extracts from Polytrichum formosum were analyzed in vitro for their inhibitory properties on collagenase and tyrosinase activity, two important cosmetic target enzymes involved respectively in skin aging and pigmentation. The 70% ethanol extract showed a dose-dependent inhibitory effect against collagenase (IC50 = 4.65 mg/mL). The methanol extract showed a mild inhibitory effect of 44% against tyrosinase at 5.33 mg/mL. Both extracts were investigated to find the constituents having a specific affinity to the enzyme targets collagenase and tyrosinase. The known compounds ohioensin A (1), ohioensin C (3), and communin B (4), together with nor-ohioensin D (2), a new benzonaphthoxanthenone, were isolated from P. formosum. Their structures were determined by mass spectrometry and NMR spectroscopy. Compounds 1 (IC50 = 71.99 µM) and 2 (IC50 = 167.33 µM) showed inhibitory activity against collagenase. Compound 1 also exhibited inhibition of 30% against tyrosinase activity at 200 µM. The binding mode of the active compounds was theoretically generated by an in-silico approach against the 3D structures of collagenase and tyrosinase. These current results present the potential application from the moss P. formosum as a new natural source of collagenase and tyrosinase inhibitors.

10.
Nature ; 570(7762): 504-508, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31117118

RESUMEN

The electrochemical synthesis of ammonia from nitrogen under mild conditions using renewable electricity is an attractive alternative1-4 to the energy-intensive Haber-Bosch process, which dominates industrial ammonia production. However, there are considerable scientific and technical challenges5,6 facing the electrochemical alternative, and most experimental studies reported so far have achieved only low selectivities and conversions. The amount of ammonia produced is usually so small that it cannot be firmly attributed to electrochemical nitrogen fixation7-9 rather than contamination from ammonia that is either present in air, human breath or ion-conducting membranes9, or generated from labile nitrogen-containing compounds (for example, nitrates, amines, nitrites and nitrogen oxides) that are typically present in the nitrogen gas stream10, in the atmosphere or even in the catalyst itself. Although these sources of experimental artefacts are beginning to be recognized and managed11,12, concerted efforts to develop effective electrochemical nitrogen reduction processes would benefit from benchmarking protocols for the reaction and from a standardized set of control experiments designed to identify and then eliminate or quantify the sources of contamination. Here we propose a rigorous procedure using 15N2 that enables us to reliably detect and quantify the electrochemical reduction of nitrogen to ammonia. We demonstrate experimentally the importance of various sources of contamination, and show how to remove labile nitrogen-containing compounds from the nitrogen gas as well as how to perform quantitative isotope measurements with cycling of 15N2 gas to reduce both contamination and the cost of isotope measurements. Following this protocol, we find that no ammonia is produced when using the most promising pure-metal catalysts for this reaction in aqueous media, and we successfully confirm and quantify ammonia synthesis using lithium electrodeposition in tetrahydrofuran13. The use of this rigorous protocol should help to prevent false positives from appearing in the literature, thus enabling the field to focus on viable pathways towards the practical electrochemical reduction of nitrogen to ammonia.

11.
J Biotechnol ; 290: 44-52, 2019 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-30576682

RESUMEN

Arabinogalactan proteins are proteoglycans located in the plant cell wall. Most arabinogalactan proteins are composed of carbohydrate moieties of ß-(1→3)-galactan main chains with ß-(1→6)-galactan side chains terminated by other glycans. In this study, three novel endo-ß-(1→3)-galactanases were identified and the substrate specificity was further studied using well-defined galactan oligomers. Linear and branched ß-(1→3)-linked galactans, which resemble the carbohydrate core of the arabinogalactan protein, were used for the characterization of endo-ß-(1→3)-galactanases. The identified enzymes required at least three consecutive galactose residues for activity. Non-substituted regions were preferred, but substituents in the -2 and +2 and in some cases also -1 and +1 subsites were tolerated to some extent, depending on the branching pattern, however at a significantly lower rate/frequency.


Asunto(s)
Galactosa/metabolismo , Oligosacáridos/metabolismo , Proteínas de Plantas , beta-Galactosidasa , Aspergillus oryzae/genética , Conformación de Carbohidratos , Clonación Molecular , Galactosa/química , Oligosacáridos/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , beta-Galactosidasa/química , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA