Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38712546

RESUMEN

We report on the latest advancements in Microcrystal Electron Diffraction (3D ED/MicroED), as discussed during a symposium at the National Center for CryoEM Access and Training housed at the New York Structural Biology Center. This snapshot describes cutting-edge developments in various facets of the field and identifies potential avenues for continued progress. Key sections discuss instrumentation access, research applications for small molecules and biomacromolecules, data collection hardware and software, data reduction software, and finally reporting and validation. 3D ED/MicroED is still early in its wide adoption by the structural science community with ample opportunities for expansion, growth, and innovation.

2.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559232

RESUMEN

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAP), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, time-resolved cryo-electron microscopy (cryo-EM) was used to capture four intermediates populated 120 or 500 milliseconds (ms) after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As nt-strand "read-out" extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating yet unknown conformational changes load it in subsequent steps. Because these events likely describe DNA opening at many bacterial promoters, this study provides needed insights into how DNA sequence regulates steps of RPo formation.

3.
Nature ; 629(8011): 481-488, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632411

RESUMEN

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Receptores Sensibles al Calcio , Humanos , Calcio/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/química , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Sitios de Unión , Estructura Secundaria de Proteína , Especificidad por Sustrato
4.
bioRxiv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38328036

RESUMEN

CryoEM democratization is hampered by access to costly plunge-freezing supplies. We introduce methods, called CryoCycle, for reliably blotting, vitrifying, and reusing clipped cryoEM grids. We demonstrate that vitreous ice may be produced by plunging clipped grids with purified proteins into liquid ethane and that clipped grids may be reused several times for different protein samples. Furthermore, we demonstrate the vitrification of thin areas of cells prepared on gold-coated, pre-clipped grids.

5.
J Vis Exp ; (202)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38108412

RESUMEN

Advancements in cryo-electron microscopy (cryoEM) techniques over the past decade have allowed structural biologists to routinely resolve macromolecular protein complexes to near-atomic resolution. The general workflow of the entire cryoEM pipeline involves iterating between sample preparation, cryoEM grid preparation, and sample/grid screening before moving on to high-resolution data collection. Iterating between sample/grid preparation and screening is typically a major bottleneck for researchers, as every iterative experiment must optimize for sample concentration, buffer conditions, grid material, grid hole size, ice thickness, and protein particle behavior in the ice, amongst other variables. Furthermore, once these variables are satisfactorily determined, grids prepared under identical conditions vary widely in whether they are ready for data collection, so additional screening sessions prior to selecting optimal grids for high-resolution data collection are recommended. This sample/grid preparation and screening process often consumes several dozen grids and days of operator time at the microscope. Furthermore, the screening process is limited to operator/microscope availability and microscope accessibility. Here, we demonstrate how to use Leginon and Smart Leginon Autoscreen to automate the majority of cryoEM grid screening. Autoscreen combines machine learning, computer vision algorithms, and microscope-handling algorithms to remove the need for constant manual operator input. Autoscreen can autonomously load and image grids with multi-scale imaging using an automated specimen-exchange cassette system, resulting in unattended grid screening for an entire cassette. As a result, operator time for screening 12 grids may be reduced to ~10 min with Autoscreen compared to ~6 h using previous methods which are hampered by their inability to account for high variability between grids. This protocol first introduces basic Leginon setup and functionality, then demonstrates Autoscreen functionality step-by-step from the creation of a template session to the end of a 12-grid automated screening session.


Asunto(s)
Sistemas de Computación , Hielo , Microscopía por Crioelectrón , Automatización , Algoritmos
6.
Structure ; 31(12): 1487-1498, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37820731

RESUMEN

Cryoelectron microscopy (cryo-EM) methods have made meaningful contributions in a wide variety of scientific research fields. In structural biology, cryo-EM routinely elucidates molecular structure from isolated biological macromolecular complexes or in a cellular context by harnessing the high-resolution power of the electron in order to image samples in a frozen, hydrated environment. For structural chemistry, the cryo-EM method popularly known as microcrystal electron diffraction (MicroED) has facilitated atomic structure generation of peptides and small molecules from their three-dimensional crystal forms. As cryo-EM has grown from an emerging technology, it has undergone modernization to enable multimodal transmission electron microscopy (TEM) techniques becoming more routine, reproducible, and accessible to accelerate research across multiple disciplines. We review recent advances in modern cryo-EM and assess how they are contributing to the future of the field with an eye to the past.


Asunto(s)
Biología , Microscopía por Crioelectrón/métodos , Microscopía Electrónica de Transmisión , Sustancias Macromoleculares/química
7.
Nat Struct Mol Biol ; 30(11): 1675-1685, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37710013

RESUMEN

Bacteria and archaea acquire resistance to viruses and plasmids by integrating fragments of foreign DNA into the first repeat of a CRISPR array. However, the mechanism of site-specific integration remains poorly understood. Here, we determine a 560-kDa integration complex structure that explains how Pseudomonas aeruginosa Cas (Cas1-Cas2/3) and non-Cas proteins (for example, integration host factor) fold 150 base pairs of host DNA into a U-shaped bend and a loop that protrude from Cas1-2/3 at right angles. The U-shaped bend traps foreign DNA on one face of the Cas1-2/3 integrase, while the loop places the first CRISPR repeat in the Cas1 active site. Both Cas3 proteins rotate 100 degrees to expose DNA-binding sites on either side of the Cas2 homodimer, which each bind an inverted repeat motif in the leader. Leader sequence motifs direct Cas1-2/3-mediated integration to diverse repeat sequences that have a 5'-GT. Collectively, this work reveals new DNA-binding surfaces on Cas2 that are critical for DNA folding and site-specific delivery of foreign DNA.


Asunto(s)
Proteínas Asociadas a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas Asociadas a CRISPR/metabolismo , ADN/química , Sitios de Unión , Plásmidos , Sistemas CRISPR-Cas/genética
10.
Microsc Microanal ; 29(29 Suppl 1): 949-950, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613800
11.
IUCrJ ; 10(Pt 1): 77-89, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36598504

RESUMEN

Single-particle cryo-electron microscopy (cryoEM) is a swiftly growing method for understanding protein structure. With increasing demand for high-throughput, high-resolution cryoEM services comes greater demand for rapid and automated cryoEM grid and sample screening. During screening, optimal grids and sample conditions are identified for subsequent high-resolution data collection. Screening is a major bottleneck for new cryoEM projects because grids must be optimized for several factors, including grid type, grid hole size, sample concentration, buffer conditions, ice thickness and particle behavior. Even for mature projects, multiple grids are commonly screened to select a subset for high-resolution data collection. Here, machine learning and novel purpose-built image-processing and microscope-handling algorithms are incorporated into the automated data-collection software Leginon, to provide an open-source solution for fully automated high-throughput grid screening. This new version, broadly called Smart Leginon, emulates the actions of an operator in identifying areas on the grid to explore as potentially useful for data collection. Smart Leginon Autoscreen sequentially loads and examines grids from an automated specimen-exchange system to provide completely unattended grid screening across a set of grids. Comparisons between a multi-grid autoscreen session and conventional manual screening by 5 expert microscope operators are presented. On average, Autoscreen reduces operator time from ∼6 h to <10 min and provides a percentage of suitable images for evaluation comparable to the best operator. The ability of Smart Leginon to target holes that are particularly difficult to identify is analyzed. Finally, the utility of Smart Leginon is illustrated with three real-world multi-grid user screening/collection sessions, demonstrating the efficiency and flexibility of the software package. The fully automated functionality of Smart Leginon significantly reduces the burden on operator screening time, improves the throughput of screening and recovers idle microscope time, thereby improving availability of cryoEM services.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Electrones
12.
Front Mol Biosci ; 10: 1296941, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288336

RESUMEN

With the increasing spread of infectious diseases worldwide, there is an urgent need for novel strategies to combat them. Cryogenic sample electron microscopy (cryo-EM) techniques, particularly electron tomography (cryo-ET), have revolutionized the field of infectious disease research by enabling multiscale observation of biological structures in a near-native state. This review highlights the recent advances in infectious disease research using cryo-ET and discusses the potential of this structural biology technique to help discover mechanisms of infection in native environments and guiding in the right direction for future drug discovery.

13.
Nat Commun ; 13(1): 1857, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35387991

RESUMEN

Cryo-FIB/SEM combined with cryo-ET has emerged from within the field of cryo-EM as the method for obtaining the highest resolution structural information of complex biological samples in-situ in native and non-native environments. However, challenges remain in conventional cryo-FIB/SEM workflows, including milling thick specimens with vitrification issues, specimens with preferred orientation, low-throughput when milling small and/or low concentration specimens, and specimens that distribute poorly across grid squares. Here we present a general approach called the 'Waffle Method' which leverages high-pressure freezing to address these challenges. We illustrate the mitigation of these challenges by applying the Waffle Method and cryo-ET to reveal the macrostructure of the polar tube in microsporidian spores in multiple complementary orientations, which was previously not possible due to preferred orientation. We demonstrate the broadness of the Waffle Method by applying it to three additional cellular samples and a single particle sample using a variety of cryo-FIB-milling hardware, with manual and automated approaches. We also present a unique and critical stress-relief gap designed specifically for waffled lamellae. We propose the Waffle Method as a way to achieve many advantages of cryo-liftout on the specimen grid while avoiding the long, challenging, and technically-demanding process required for cryo-liftout.


Asunto(s)
Tomografía con Microscopio Electrónico , Alimentos , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Congelación , Flujo de Trabajo
14.
Annu Rev Biochem ; 91: 1-32, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35320683

RESUMEN

Cryo-electron microscopy (cryo-EM) continues its remarkable growth as a method for visualizing biological objects, which has been driven by advances across the entire pipeline. Developments in both single-particle analysis and in situ tomography have enabled more structures to be imaged and determined to better resolutions, at faster speeds, and with more scientists having improved access. This review highlights recent advances at each stageof the cryo-EM pipeline and provides examples of how these techniques have been used to investigate real-world problems, including antibody development against the SARS-CoV-2 spike during the recent COVID-19 pandemic.


Asunto(s)
COVID-19 , Pandemias , Microscopía por Crioelectrón/métodos , Humanos , SARS-CoV-2 , Imagen Individual de Molécula
15.
Trends Biochem Sci ; 47(2): 106-116, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34823974

RESUMEN

Cryogenic electron microscopy (cryoEM) uses images of frozen hydrated biological specimens to produce macromolecular structures, opening up previously inaccessible levels of biological organization to high-resolution structural analysis. CryoEM has the potential for broad impact in biomedical research, including basic cell, molecular, and structural biology, and increasingly in drug discovery and vaccine development. Recent advances have led to the expansion of molecular and cellular structure determination at an exponential rate. National and regional centers have emerged to support this growth by increasing the accessibility of cryoEM throughout the biomedical research community. Through cooperation and synergy, these centers form a network of resources that accelerate the adoption of best practices for access and training and establish sustainable workflows to build future research capacity.


Asunto(s)
Microscopía por Crioelectrón , Microscopía por Crioelectrón/métodos , Estructura Molecular
16.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34916296

RESUMEN

The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.


Asunto(s)
Calcio/metabolismo , Regulación de la Expresión Génica/fisiología , Homeostasis/fisiología , Receptores Sensibles al Calcio/metabolismo , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Receptores Sensibles al Calcio/genética , Transducción de Señal
17.
Nat Struct Mol Biol ; 28(11): 936-944, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759376

RESUMEN

The ß1-adrenergic receptor (ß1-AR) can activate two families of G proteins. When coupled to Gs, ß1-AR increases cardiac output, and coupling to Gi leads to decreased responsiveness in myocardial infarction. By comparative structural analysis of turkey ß1-AR complexed with either Gi or Gs, we investigate how a single G-protein-coupled receptor simultaneously signals through two G proteins. We find that, although the critical receptor-interacting C-terminal α5-helices on Gαi and Gαs interact similarly with ß1-AR, the overall interacting modes between ß1-AR and G proteins vary substantially. Functional studies reveal the importance of the differing interactions and provide evidence that the activation efficacy of G proteins by ß1-AR is determined by the entire three-dimensional interaction surface, including intracellular loops 2 and 4 (ICL2 and ICL4).


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Estructura Terciaria de Proteína/fisiología , Receptores Adrenérgicos beta 1/metabolismo , Animales , Gasto Cardíaco/genética , Gasto Cardíaco/fisiología , Línea Celular , Microscopía por Crioelectrón , AMP Cíclico/metabolismo , Activación Enzimática/fisiología , Células HEK293 , Cardiopatías/patología , Humanos , Hipertensión/patología , Isoproterenol/química , Estructura Secundaria de Proteína/fisiología , Células Sf9 , Transducción de Señal/fisiología
18.
Acta Crystallogr D Struct Biol ; 77(Pt 11): 1451-1459, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34726172

RESUMEN

Thyroglobulin is a homodimeric glycoprotein that is essential for the generation of thyroid hormones in vertebrates. Upon secretion into the lumen of follicles in the thyroid gland, tyrosine residues within the protein become iodinated to produce monoiodotyrosine (MIT) and diiodotyrosine (DIT). A subset of evolutionarily conserved pairs of DIT (and MIT) residues can then engage in oxidative coupling reactions that yield either thyroxine (T4; produced from coupling of a DIT `acceptor' with a DIT `donor') or triiodothyronine (T3; produced from coupling of a DIT acceptor with an MIT donor). Although multiple iodotyrosine residues have been identified as potential donors and acceptors, the specificity and structural context of the pairings (i.e. which donor is paired with which acceptor) have remained unclear. Here, single-particle cryogenic electron microscopy (cryoEM) was used to generate a high-resolution reconstruction of bovine thyroglobulin (2.3 Šresolution in the core region and 2.6 Šoverall), allowing the structural characterization of two post-reaction acceptor-donor pairs as well as tyrosine residues modified as MIT and DIT. A substantial spatial separation between donor Tyr149 and acceptor Tyr24 was observed, suggesting that for thyroxine synthesis significant peptide motion is required for coupling at the evolutionarily conserved thyroglobulin amino-terminus.


Asunto(s)
Bovinos , Tiroglobulina/química , Animales , Bovinos/metabolismo , Microscopía por Crioelectrón , Halogenación , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Tiroglobulina/metabolismo , Tiroglobulina/ultraestructura
19.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599106

RESUMEN

The first step in gene expression in all organisms requires opening the DNA duplex to expose one strand for templated RNA synthesis. In Escherichia coli, promoter DNA sequence fundamentally determines how fast the RNA polymerase (RNAP) forms "open" complexes (RPo), whether RPo persists for seconds or hours, and how quickly RNAP transitions from initiation to elongation. These rates control promoter strength in vivo, but their structural origins remain largely unknown. Here, we use cryoelectron microscopy to determine the structures of RPo formed de novo at three promoters with widely differing lifetimes at 37 °C: λPR (t1/2 ∼10 h), T7A1 (t1/2 ∼4 min), and a point mutant in λPR (λPR-5C) (t1/2 ∼2 h). Two distinct RPo conformers are populated at λPR, likely representing productive and unproductive forms of RPo observed in solution studies. We find that changes in the sequence and length of DNA in the transcription bubble just upstream of the start site (+1) globally alter the network of DNA-RNAP interactions, base stacking, and strand order in the single-stranded DNA of the transcription bubble; these differences propagate beyond the bubble to upstream and downstream DNA. After expanding the transcription bubble by one base (T7A1), the nontemplate strand "scrunches" inside the active site cleft; the template strand bulges outside the cleft at the upstream edge of the bubble. The structures illustrate how limited sequence changes trigger global alterations in the transcription bubble that modulate the RPo lifetime and affect the subsequent steps of the transcription cycle.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Infecciones por Escherichia coli/genética , Escherichia coli/genética , Regiones Promotoras Genéticas/genética , ADN Bacteriano/genética , Transcripción Genética/genética
20.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33883267

RESUMEN

Backtracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking. We use cryo-electron microscopy, RNA-protein cross-linking, and unbiased molecular dynamics simulations to characterize SARS-CoV-2 RdRp backtracking. The results establish that the single-stranded 3' segment of the product RNA generated by backtracking extrudes through the RdRp nucleoside triphosphate (NTP) entry tunnel, that a mismatched nucleotide at the product RNA 3' end frays and enters the NTP entry tunnel to initiate backtracking, and that nsp13 stimulates RdRp backtracking. Backtracking may aid proofreading, a crucial process for SARS-CoV-2 resistance against antivirals.


Asunto(s)
COVID-19/virología , SARS-CoV-2/fisiología , Replicación Viral/genética , Adenosina Monofosfato/farmacología , Antivirales/farmacología , COVID-19/genética , COVID-19/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Microscopía por Crioelectrón/métodos , ADN Helicasas/metabolismo , Genoma Viral , Humanos , Simulación de Dinámica Molecular , ARN Helicasas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA