Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Wiley Interdiscip Rev RNA ; 15(2): e1838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38509732

RESUMEN

Disruptions in spatiotemporal gene expression can result in atypical brain function. Specifically, autism spectrum disorder (ASD) is characterized by abnormalities in pre-mRNA splicing. Abnormal splicing patterns have been identified in the brains of individuals with ASD, and mutations in splicing factors have been found to contribute to neurodevelopmental delays associated with ASD. Here we review studies that shed light on the importance of splicing observed in ASD and that explored the intricate relationship between splicing factors and ASD, revealing how disruptions in pre-mRNA splicing may underlie ASD pathogenesis. We provide an overview of the research regarding all splicing factors associated with ASD and place a special emphasis on five specific splicing factors-HNRNPH2, NOVA2, WBP4, SRRM2, and RBFOX1-known to impact the splicing of ASD-related genes. In the discussion of the molecular mechanisms influenced by these splicing factors, we lay the groundwork for a deeper understanding of ASD's complex etiology. Finally, we discuss the potential benefit of unraveling the connection between splicing and ASD for the development of more precise diagnostic tools and targeted therapeutic interventions. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Evolution and Genomics > Computational Analyses of RNA RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Factores de Empalme de ARN/metabolismo , Antígeno Ventral Neuro-Oncológico
2.
Am J Hum Genet ; 110(12): 2112-2119, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37963460

RESUMEN

Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WW domain-binding protein 4 (WBP4) is part of the early spliceosomal complex and has not been previously associated with human pathologies in the Online Mendelian Inheritance in Man (OMIM) database. Through GeneMatcher, we identified ten individuals from eight families with a severe neurodevelopmental syndrome featuring variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal, and gastrointestinal abnormalities. Genetic analysis revealed five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated a complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including in genes associated with abnormalities of the nervous system, potentially underlying the phenotypes of the probands. We conclude that bi-allelic variants in WBP4 cause a developmental disorder with variable presentations, adding to the growing list of human spliceosomopathies.


Asunto(s)
Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Humanos , Empalmosomas/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Síndrome , Malformaciones del Sistema Nervioso/genética , Pérdida de Heterocigocidad , Fenotipo
3.
medRxiv ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37425688

RESUMEN

Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WBP4 (WW Domain Binding Protein 4) is part of the early spliceosomal complex, and was not described before in the context of human pathologies. Ascertained through GeneMatcher we identified eleven patients from eight families, with a severe neurodevelopmental syndrome with variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal and gastrointestinal abnormalities. Genetic analysis revealed overall five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including enrichment for abnormalities of the nervous system and musculoskeletal system genes, suggesting that the overlapping differentially spliced genes are related to the common phenotypes of the probands. We conclude that biallelic variants in WBP4 cause a spliceosomopathy. Further functional studies are called for better understanding of the mechanism of pathogenicity.

4.
PLoS Biol ; 21(6): e3002175, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379322

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) protein 1 (TAL1) is a central transcription factor in hematopoiesis. The timing and level of TAL1 expression orchestrate the differentiation to specialized blood cells and its overexpression is a common cause of T-ALL. Here, we studied the 2 protein isoforms of TAL1, short and long, which are generated by the use of alternative promoters as well as by alternative splicing. We analyzed the expression of each isoform by deleting an enhancer or insulator, or by opening chromatin at the enhancer location. Our results show that each enhancer promotes expression from a specific TAL1 promoter. Expression from a specific promoter gives rise to a unique 5' UTR with differential regulation of translation. Moreover, our study suggests that the enhancers regulate TAL1 exon 3 alternative splicing by inducing changes in the chromatin at the splice site, which we demonstrate is mediated by KMT2B. Furthermore, our results indicate that TAL1-short binds more strongly to TAL1 E-protein partners and functions as a stronger transcription factor than TAL1-long. Specifically TAL1-short has a unique transcription signature promoting apoptosis. Finally, when we expressed both isoforms in mice bone marrow, we found that while overexpression of both isoforms prevents lymphoid differentiation, expression of TAL1-short alone leads to hematopoietic stem cell exhaustion. Furthermore, we found that TAL1-short promoted erythropoiesis and reduced cell survival in the CML cell line K562. While TAL1 and its partners are considered promising therapeutic targets in the treatment of T-ALL, our results show that TAL1-short could act as a tumor suppressor and suggest that altering TAL1 isoform's ratio could be a preferred therapeutic approach.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cromatina , Hematopoyesis/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Factores de Transcripción/metabolismo
5.
Trends Genet ; 38(9): 892-894, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35750536

RESUMEN

Spatiotemporal gene expression drives neurodevelopment. Therefore, abnormal expression during development results in atypical brain function. Alterations in gene expression have been described in autism spectrum disorder (ASD). Here, we focus on one aspect of gene expression, pre-mRNA splicing, specifically, the mechanism of its regulation by chromatin and how this is altered in ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Encéfalo , Cromatina/genética , Humanos , Empalme del ARN/genética
6.
NAR Cancer ; 3(3): zcab029, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34316716

RESUMEN

Enhancer demethylation in leukemia has been shown to lead to overexpression of genes which promote cancer characteristics. The vascular endothelial growth factor A (VEGFA) enhancer, located 157 Kb downstream of its promoter, is demethylated in chronic myeloid leukemia (CML). VEGFA has several alternative splicing isoforms with different roles in cancer progression. Since transcription and splicing are coupled, we wondered whether VEGFA enhancer activity can also regulate the gene's alternative splicing to contribute to the pathology of CML. Our results show that mutating the VEGFA +157 enhancer promotes exclusion of exons 6a and 7 and activating the enhancer by tethering a chromatin activator has the opposite effect. In line with these results, CML patients present with high expression of +157 eRNA and inclusion of VEGFA exons 6a and 7. In addition, our results show that the positive regulator of RNAPII transcription elongation, CCNT2, binds VEGFA's promoter and enhancer, and its silencing promotes exclusion of exons 6a and 7 as it slows down RNAPII elongation rate. Thus our results suggest that VEGFA's +157 enhancer regulates its alternative splicing by increasing RNAPII elongation rate via CCNT2. Our work demonstrates for the first time a connection between an endogenous enhancer and alternative splicing regulation of its target gene.

7.
RNA ; 27(11): 1353-1362, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34321328

RESUMEN

Changes in the cellular environment result in chromatin structure alteration, which in turn regulates gene expression. To learn about the effect of the cellular environment on the transcriptome, we studied the H3K9 demethylase KDM3A. Using RNA-seq, we found that KDM3A regulates the transcription and alternative splicing of genes associated with cell cycle and DNA damage. We showed that KDM3A undergoes phosphorylation by PKA at serine 265 following DNA damage, and that the phosphorylation is important for proper cell-cycle regulation. We demonstrated that SAT1 alternative splicing, regulated by KDM3A, plays a role in cell-cycle regulation. Furthermore we found that KDM3A's demethylase activity is not needed for SAT1 alternative splicing regulation. In addition, we identified KDM3A's protein partner ARID1A, the SWI/SNF subunit, and SRSF3 as regulators of SAT1 alternative splicing and showed that KDM3A is essential for SRSF3 binding to SAT1 pre-mRNA. These results suggest that KDM3A serves as a sensor of the environment and an adaptor for splicing factor binding. Our work reveals chromatin sensing of the environment in the regulation of alternative splicing.


Asunto(s)
Acetiltransferasas/metabolismo , Empalme Alternativo , Neoplasias de la Mama/patología , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas con Dominio de Jumonji/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Factores de Transcripción/metabolismo , Acetiltransferasas/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Células MCF-7 , Fosforilación , Unión Proteica , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Transcripción/genética
8.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927736

RESUMEN

Jumonji-domain-containing protein 6 (JMJD6) is a Fe(II) and 2-oxogluterate (2OG) dependent oxygenase involved in gene regulation through post-translationally modifying nuclear proteins. It is highly expressed in many cancer types and linked to tumor progression and metastasis. Four alternatively-spliced jmjd6 transcripts were annotated. Here, we focus on the two most abundantly expressed ones, which we call jmjd6-2 and jmjd6-Ex5. TCGA SpliceSeq data revealed a significant decrease of jmjd6-Ex5 transcripts in patients and postmortem tissue of several tumors. The two protein isoforms are distinguished by their C-terminal sequences, which include a serine-rich region (polyS-domain) in JMJD6-2 that is not present in JMJD6-Ex5. Immunoprecipitation followed by LC-MS/MS for JMJD6-Ex5 shows that different sets of proteins interact with JMJD6-2 and JMJD6-Ex5 with only a few overlaps. In particular, we found TFIIF-associating CTD phosphatase (FCP1), proteins of the survival of motor neurons (SMN) complex, heterogeneous nuclear ribonucleoproteins (hnRNPs) and upstream binding factor (UBF) to interact with JMJD6-Ex5. Like JMJD6-2, both UBF and FCP1 comprise a polyS-domain. The polyS domain of JMJD6-2 might block the interaction with polyS-domains of other proteins. In contrast, JMJD6-2 interacts with many SR-like proteins with arginine/serine-rich (RS)-domains, including several splicing factors. In an HIV-based splicing reporter assay, co-expression of JMJD6-2 inhibited exon inclusion, whereas JMJD6-Ex5 did not have any effect. Furthermore, the silencing of jmjd6 by siRNAs favored jmjd6-Ex5 transcripts, suggesting that JMJD6 controls splicing of its own pre-mRNA. The distinct molecular properties of JMJD6-2 and JMJD6-Ex5 open a lead into the functional implications of the variations of their relative abundance in tumors.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/metabolismo , Empalme del ARN , Células HEK293 , Células HeLa , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Neoplasias/metabolismo , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA