Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(6): 114317, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38848213

RESUMEN

Naive CD4+ T cells must differentiate in order to orchestrate immunity to Plasmodium, yet understanding of their emerging phenotypes, clonality, spatial distributions, and cellular interactions remains incomplete. Here, we observe that splenic polyclonal CD4+ T cells differentiate toward T helper 1 (Th1) and T follicular helper (Tfh)-like states and exhibit rarer phenotypes not elicited among T cell receptor (TCR) transgenic counterparts. TCR clones present at higher frequencies exhibit Th1 skewing, suggesting that variation in major histocompatibility complex class II (MHC-II) interaction influences proliferation and Th1 differentiation. To characterize CD4+ T cell interactions, we map splenic microarchitecture, cellular locations, and molecular interactions using spatial transcriptomics at near single-cell resolution. Tfh-like cells co-locate with stromal cells in B cell follicles, while Th1 cells in red pulp co-locate with activated monocytes expressing multiple chemokines and MHC-II. Spatial mapping of individual transcriptomes suggests that proximity to chemokine-expressing monocytes correlates with stronger effector phenotypes in Th1 cells. Finally, CRISPR-Cas9 gene disruption reveals a role for CCR5 in promoting clonal expansion and Th1 differentiation. A database of cellular locations and interactions is presented: https://haquelab.mdhs.unimelb.edu.au/spatial_gui/.


Asunto(s)
Linfocitos T CD4-Positivos , Diferenciación Celular , Malaria , Fenotipo , Animales , Malaria/inmunología , Malaria/parasitología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Ratones , Ratones Endogámicos C57BL , Células TH1/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores CCR5/metabolismo , Receptores CCR5/genética , Bazo/inmunología
2.
Nat Commun ; 15(1): 5497, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944658

RESUMEN

Children in malaria-endemic regions can experience repeated Plasmodium infections over short periods of time. Effects of re-infection on multiple co-existing CD4+ T cell subsets remain unresolved. Here, we examine antigen-experienced CD4+ T cells during re-infection in mice, using scRNA-seq/TCR-seq and spatial transcriptomics. TCR transgenic TEM cells initiate rapid Th1/Tr1 recall responses prior to proliferating, while GC Tfh counterparts are refractory, with TCM/Tfh-like cells exhibiting modest non-proliferative responses. Th1-recall is a partial facsimile of primary Th1-responses, with no upregulated effector-associated genes being unique to recall. Polyclonal, TCR-diverse, CD4+ T cells exhibit similar recall dynamics, with individual clones giving rise to multiple effectors including highly proliferative Th1/Tr1 cells, as well as GC Tfh and Tfh-like cells lacking proliferative capacity. Thus, we show substantial diversity in recall responses mounted by multiple co-existing CD4+ T cell subsets in the spleen, and present graphical user interfaces for studying gene expression dynamics and clonal relationships during re-infection.


Asunto(s)
Linfocitos T CD4-Positivos , Malaria , Reinfección , Animales , Malaria/inmunología , Malaria/parasitología , Linfocitos T CD4-Positivos/inmunología , Ratones , Reinfección/inmunología , Células TH1/inmunología , Ratones Endogámicos C57BL , Bazo/inmunología , Bazo/parasitología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Ratones Transgénicos , Femenino , Memoria Inmunológica
4.
JCI Insight ; 8(24)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37917177

RESUMEN

Control of visceral leishmaniasis (VL) depends on proinflammatory Th1 cells that activate infected tissue macrophages to kill resident intracellular parasites. However, proinflammatory cytokines produced by Th1 cells can damage tissues and require tight regulation. Th1 cell IL-10 production is an important cell-autologous mechanism to prevent such damage. However, IL-10-producing Th1 (type 1 regulatory; Tr1) cells can also delay control of parasites and the generation of immunity following drug treatment or vaccination. To identify molecules to target in order to alter the balance between Th1 and Tr1 cells for improved antiparasitic immunity, we compared the molecular and phenotypic profiles of Th1 and Tr1 cells in experimental VL caused by Leishmania donovani infection of C57BL/6J mice. We also identified a shared Tr1 cell protozoan signature by comparing the transcriptional profiles of Tr1 cells from mice with experimental VL and malaria. We identified LAG3 as an important coinhibitory receptor in patients with VL and experimental VL, and we reveal tissue-specific heterogeneity of coinhibitory receptor expression by Tr1 cells. We also discovered a role for the transcription factor Pbx1 in suppressing CD4+ T cell cytokine production. This work provides insights into the development and function of CD4+ T cells during protozoan parasitic infections and identifies key immunoregulatory molecules.


Asunto(s)
Interleucina-10 , Infecciones por Protozoos , Células TH1 , Células TH1/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-10/metabolismo , Linfocitos T Reguladores/inmunología , Ratones Endogámicos C57BL , Leishmania donovani , Leishmaniasis Visceral/inmunología , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/parasitología , Infecciones por Protozoos/inmunología , Humanos , Animales , Ratones , Proteína del Gen 3 de Activación de Linfocitos/antagonistas & inhibidores , Interferón gamma/metabolismo , Unión Proteica , Regiones Promotoras Genéticas/inmunología , Modelos Animales de Enfermedad
5.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37781920

RESUMEN

The development of highly effective malaria vaccines and improvement of drug-treatment protocols to boost antiparasitic immunity are critical for malaria elimination. However, the rapid establishment of parasite-specific immune regulatory networks following exposure to malaria parasites hampers these efforts. Here, we identified stimulator of interferon genes (STING) as a critical mediator of type I interferon production by CD4+ T cells during blood-stage Plasmodium falciparum infection. The activation of STING in CD4+ T cells by cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) stimulated IFNB gene transcription, which promoted development of IL-10- and IFN-γ-coproducing CD4+ T (type I regulatory [Tr1]) cells. The critical role for type I IFN signaling for Tr1 cell development was confirmed in vivo using a preclinical malaria model. CD4+ T cell sensitivity to STING phosphorylation was increased in healthy volunteers following P. falciparum infection, particularly in Tr1 cells. These findings identified STING expressed by CD4+ T cells as an important mediator of type I IFN production and Tr1 cell development and activation during malaria.


Asunto(s)
Interferón Tipo I , Malaria Falciparum , Linfocitos T Reguladores , Humanos , Linfocitos T CD4-Positivos , Interferón Tipo I/inmunología , Malaria Falciparum/inmunología , Linfocitos T Reguladores/inmunología
6.
mBio ; 14(4): e0112923, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37449844

RESUMEN

Maturation rates of malaria parasites within red blood cells (RBCs) can be influenced by host nutrient status and circadian rhythm; whether host inflammatory responses can also influence maturation remains less clear. Here, we observed that systemic host inflammation induced in mice by an innate immune stimulus, lipopolysaccharide (LPS), or by ongoing acute Plasmodium infection, slowed the progression of a single cohort of parasites from one generation of RBC to the next. Importantly, plasma from LPS-conditioned or acutely infected mice directly inhibited parasite maturation during in vitro culture, which was not rescued by supplementation, suggesting the emergence of inhibitory factors in plasma. Metabolomic assessments confirmed substantial alterations to the plasma of LPS-conditioned and acutely infected mice, and identified a small number of candidate inhibitory metabolites. Finally, we confirmed rapid parasite responses to systemic host inflammation in vivo using parasite scRNA-seq, noting broad impairment in transcriptional activity and translational capacity specifically in trophozoites but not rings or schizonts. Thus, we provide evidence that systemic host inflammation rapidly triggered transcriptional alterations in circulating blood-stage Plasmodium trophozoites and predict candidate inhibitory metabolites in the plasma that may impair parasite maturation in vivo. IMPORTANCE Malaria parasites cyclically invade, multiply, and burst out of red blood cells. We found that a strong inflammatory response can cause changes to the composition of host plasma, which directly slows down parasite maturation. Thus, our work highlights a new mechanism that limits malaria parasite growth in the bloodstream.


Asunto(s)
Malaria , Parásitos , Ratones , Animales , Transcriptoma , Lipopolisacáridos , Malaria/parasitología , Inflamación , Eritrocitos/parasitología
8.
J Clin Invest ; 133(1)2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36594463

RESUMEN

Control of intracellular parasites responsible for malaria requires host IFN-γ+T-bet+CD4+ T cells (Th1 cells) with IL-10 produced by Th1 cells to mitigate the pathology induced by this inflammatory response. However, these IL-10-producing Th1 (induced type I regulatory [Tr1]) cells can also promote parasite persistence or impair immunity to reinfection or vaccination. Here, we identified molecular and phenotypic signatures that distinguished IL-10-Th1 cells from IL-10+Tr1 cells in Plasmodium falciparum-infected people who participated in controlled human malaria infection studies, as well as C57BL/6 mice with experimental malaria caused by P. berghei ANKA. We also identified a conserved Tr1 cell molecular signature shared between patients with malaria, dengue, and graft-versus-host disease. Genetic manipulation of primary human CD4+ T cells showed that the transcription factor cMAF played an important role in the induction of IL-10, while BLIMP-1 promoted the development of human CD4+ T cells expressing multiple coinhibitory receptors. We also describe heterogeneity of Tr1 cell coinhibitory receptor expression that has implications for targeting these molecules for clinical advantage during infection. Overall, this work provides insights into CD4+ T cell development during malaria that offer opportunities for creation of strategies to modulate CD4+ T cell functions and improve antiparasitic immunity.


Asunto(s)
Malaria , Linfocitos T Reguladores , Ratones , Animales , Humanos , Células TH1 , Interleucina-10 , Ratones Endogámicos C57BL , Malaria/genética , Linfocitos T CD4-Positivos
9.
Clin Transl Immunology ; 11(6): e1396, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663920

RESUMEN

Objectives: There is an urgent need to be able to identify individuals with asymptomatic Leishmania donovani infection, so their risk of progressing to VL and transmitting parasites can be managed. This study examined transcriptional markers expressed by CD4+ T cells that could distinguish asymptomatic individuals from endemic controls and visceral leishmaniasis (VL) patients. Methods: CD4+ T cells were isolated from individuals with asymptomatic L. donovani infection, endemic controls and VL patients. RNA was extracted and RNAseq employed to identify differentially expressed genes. The expression of one gene and its protein product during asymptomatic infection were evaluated. Results: Amphiregulin (AREG) was identified as a distinguishing gene product in CD4+ T cells from individuals with asymptomatic L. donovani infection, compared to VL patients and healthy endemic control individuals. AREG levels in plasma and antigen-stimulated whole-blood assay cell culture supernatants were significantly elevated in asymptomatic individuals, compared to endemic controls and VL patients. Regulatory T (Treg) cells were identified as an important source of AREG amongst CD4+ T-cell subsets in asymptomatic individuals. Conclusion: Increased Treg cell AREG expression was identified in individuals with asymptomatic L. donovani infection, suggesting the presence of an ongoing inflammatory response in these individuals required for controlling infection and that AREG may play an important role in preventing inflammation-induced tissue damage and subsequent disease in asymptomatic individuals.

10.
Nat Immunol ; 21(12): 1597-1610, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046889

RESUMEN

The dynamics of CD4+ T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4+ T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (TH1) and follicular helper T (TFH) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated TH1 and TFH trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between TFH and central memory were revealed, with antimalarials modulating these responses and boosting TH1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4+ T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene-gene correlations ( http://haquelab.mdhs.unimelb.edu.au/cd4_memory/ ).


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Memoria Inmunológica , Malaria/inmunología , Plasmodium/inmunología , Transcriptoma , Traslado Adoptivo , Animales , Antimaláricos/farmacología , Biomarcadores , Cromatina/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Malaria/parasitología , Malaria/terapia , Ratones , Plasmodium/efectos de los fármacos
11.
Immunol Cell Biol ; 98(8): 620-622, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32895977

RESUMEN

Holz et al. report a glycolipid-conjugate vaccine that provides sterile immunity in mice against Plasmodium berghei ANKA sporozoite challenge by inducing long-lasting tissue-resident memory (TRM) CD8+ T cells in the liver.


Asunto(s)
Vacunas contra el Cáncer , Vacunas contra la Malaria , Malaria , Animales , Linfocitos T CD8-positivos/inmunología , Glucolípidos , Memoria Inmunológica , Hígado/inmunología , Malaria/prevención & control , Ratones , Péptidos , Roedores , Vacunación , Vacunas de Subunidad
12.
Nat Immunol ; 21(10): 1205-1218, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32839608

RESUMEN

Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Inflamación/inmunología , Células Asesinas Naturales/inmunología , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , Malaria/inmunología , Proteínas de la Membrana/metabolismo , Plasmodium/fisiología , Animales , Células Cultivadas , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Exocitosis , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Vesículas Secretoras/metabolismo
13.
JCI Insight ; 5(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32484791

RESUMEN

Acute gastrointestinal (GI) graft-versus-host disease (GVHD) is a primary determinant of mortality after allogeneic hematopoietic stem cell transplantation (alloSCT). The condition is mediated by alloreactive donor CD4+ T cells that differentiate into pathogenic subsets expressing IFN-γ, IL-17A, or GM-CSF and is regulated by subsets expressing IL-10 and/or Foxp3. Developmental relationships between Th cell states during priming in mesenteric lymph nodes (mLNs) and effector function in the GI tract remain undefined at genome scale. We applied scRNA-Seq and computational modeling to a mouse model of donor DC-mediated GVHD exacerbation, creating an atlas of putative CD4+ T cell differentiation pathways in vivo. Computational trajectory inference suggested emergence of pathogenic and regulatory states along a single developmental trajectory in mLNs. Importantly, we inferred an unexpected second trajectory, categorized by little proliferation or cytokine expression, reduced glycolysis, and high tcf7 expression. TCF1hi cells upregulated α4ß7 before gut migration and failed to express cytokines. These cells exhibited recall potential and plasticity following secondary transplantation, including cytokine or Foxp3 expression, but reduced T cell factor 1 (TCF1). Thus, scRNA-Seq suggested divergence of alloreactive CD4+ T cells into quiescent and effector states during gut GVHD exacerbation by donor DC, reflecting putative heterogeneous priming in vivo. These findings, which are potentially the first at a single-cell level during GVHD over time, may assist in examination of T cell differentiation in patients undergoing alloSCT.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Activación de Linfocitos/inmunología , Transcriptoma/genética , Animales , Microbioma Gastrointestinal/genética , Enfermedad Injerto contra Huésped/genética , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante Homólogo/métodos
14.
Immunol Cell Biol ; 97(7): 617-624, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31120158

RESUMEN

The ability of circulating CD4+ T cells to retain memories of previous antigenic encounters is a cardinal feature of the adaptive immune system. Over the past two decades, since the first description of central and effector memory T cells, many studies have examined molecular mechanisms controlling CD8+ T-cell memory, with comparatively less research into CD4+ T-cell memory. Here, we review a number of seminal studies showing that circulating memory CD4+ T cells develop directly from effector cells; and in so doing, preserve features of their effector precursors. We examine mechanisms controlling the development and phenotypes of memory CD4+ T cells, and provide an updated model that accommodates both the central and effector memory paradigm and the diverse T helper cell classification system.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Memoria Inmunológica , Animales , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Metabolismo Energético , Regulación de la Expresión Génica , Humanos , Inmunofenotipificación , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Modelos Biológicos , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Transcripción Genética
15.
PLoS Pathog ; 15(2): e1007599, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30811498

RESUMEN

Plasmodium parasites invade and multiply inside red blood cells (RBC). Through a cycle of maturation, asexual replication, rupture and release of multiple infective merozoites, parasitised RBC (pRBC) can reach very high numbers in vivo, a process that correlates with disease severity in humans and experimental animals. Thus, controlling pRBC numbers can prevent or ameliorate malaria. In endemic regions, circulating parasite-specific antibodies associate with immunity to high parasitemia. Although in vitro assays reveal that protective antibodies could control pRBC via multiple mechanisms, in vivo assessment of antibody function remains challenging. Here, we employed two mouse models of antibody-mediated immunity to malaria, P. yoelii 17XNL and P. chabaudi chabaudi AS infection, to study infection-induced, parasite-specific antibody function in vivo. By tracking a single generation of pRBC, we tested the hypothesis that parasite-specific antibodies accelerate pRBC clearance. Though strongly protective against homologous re-challenge, parasite-specific IgG did not alter the rate of pRBC clearance, even in the presence of ongoing, systemic inflammation. Instead, antibodies prevented parasites progressing from one generation of RBC to the next. In vivo depletion studies using clodronate liposomes or cobra venom factor, suggested that optimal antibody function required splenic macrophages and dendritic cells, but not complement C3/C5-mediated killing. Finally, parasite-specific IgG bound poorly to the surface of pRBC, yet strongly to structures likely exposed by the rupture of mature schizonts. Thus, in our models of humoral immunity to malaria, infection-induced antibodies did not accelerate pRBC clearance, and instead co-operated with splenic phagocytes to block subsequent generations of pRBC.


Asunto(s)
Malaria/inmunología , Malaria/metabolismo , Plasmodium/crecimiento & desarrollo , Animales , Anticuerpos Antiprotozoarios/metabolismo , Modelos Animales de Enfermedad , Eritrocitos/microbiología , Eritrocitos/fisiología , Humanos , Ratones , Parásitos , Fagocitos , Plasmodium/metabolismo , Plasmodium/patogenicidad , Plasmodium chabaudi/inmunología , Plasmodium chabaudi/patogenicidad , Plasmodium yoelii/inmunología , Plasmodium yoelii/patogenicidad
16.
Exp Parasitol ; 198: 7-16, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30682336

RESUMEN

Plasmodium falciparum histone deacetylases (PfHDACs) are an important class of epigenetic regulators that alter protein lysine acetylation, contributing to regulation of gene expression and normal parasite growth and development. PfHDACs are therefore under investigation as drug targets for malaria. Despite this, our understanding of the biological roles of these enzymes is only just beginning to emerge. In higher eukaryotes, HDACs function as part of multi-protein complexes and act on both histone and non-histone substrates. Here, we present a proteomics analysis of PfHDAC1 immunoprecipitates, identifying 26 putative P. falciparum complex proteins in trophozoite-stage asexual intraerythrocytic parasites. The co-migration of two of these (P. falciparum heat shock proteins 70-1 and 90) with PfHDAC1 was validated using Blue Native PAGE combined with Western blot. These data provide a snapshot of possible PfHDAC1 interactions and a starting point for future studies focused on elucidating the broader function of PfHDACs in Plasmodium parasites.


Asunto(s)
Histona Desacetilasa 1/análisis , Plasmodium falciparum/enzimología , Proteómica , Proteínas Protozoarias/química , Western Blotting , Electroforesis en Gel de Poliacrilamida , Histona Desacetilasa 1/química , Inmunoprecipitación , Espectrometría de Masas/métodos
17.
J Immunol ; 199(12): 4165-4179, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29084838

RESUMEN

We describe an MHC class II (I-Ab)-restricted TCR transgenic mouse line that produces CD4+ T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4+ T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human (Plasmodium falciparum) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8+ T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4+ T cells and the previously described PbT-I CD8+ T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8+ DC (a subset of XCR1+ DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4+ T cell responses. Depletion of CD8+ DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4+ T cell immunity during malaria and provides evidence that CD4+ T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8+ DC.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD4-Positivos/inmunología , Antígenos CD40/inmunología , Células Dendríticas/inmunología , Malaria/inmunología , Ratones Transgénicos/inmunología , Parasitemia/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos de Protozoos/inmunología , Antígenos CD40/deficiencia , Ligando de CD40/inmunología , Células Cultivadas , Cruzamientos Genéticos , Hibridomas , Activación de Linfocitos , Malaria Cerebral/inmunología , Malaria Cerebral/prevención & control , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos/genética , Plasmodium berghei/inmunología , Quimera por Radiación
18.
Int J Parasitol ; 47(14): 913-922, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28864033

RESUMEN

The artemisinins are the first-line therapy for severe and uncomplicated malaria, since they cause rapid declines in parasitemia after treatment. Despite this, in vivo mechanisms underlying this rapid decline remain poorly characterised. The overall decline in parasitemia is the net effect of drug inhibition of parasites and host clearance, which competes against any ongoing parasite proliferation. Separating these mechanisms in vivo was not possible through measurements of total parasitemia alone. Therefore, we employed an adoptive transfer approach in which C57BL/6J mice were transfused with Plasmodium berghei ANKA strain-infected, fluorescent red blood cells, and subsequently drug-treated. This approach allowed us to distinguish between the initial drug-treated generation of parasites (Gen0), and their progeny (Gen1). Artesunate efficiently impaired maturation of Gen0 parasites, such that a sufficiently high dose completely arrested maturation after 6h of in vivo exposure. In addition, artesunate-affected parasites were cleared from circulation with a half-life of 6.7h. In vivo cell depletion studies using clodronate liposomes revealed an important role for host phagocytes in the removal of artesunate-affected parasites, particularly ring and trophozoite stages. Finally, we found that a second antimalarial drug, mefloquine, was less effective than artesunate at suppressing parasite maturation and driving host-mediated parasite clearance. Thus, we propose that in vivo artesunate treatment causes rapid decline in parasitemia by arresting parasite maturation and encouraging phagocyte-mediated clearance of parasitised RBCs.


Asunto(s)
Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Parasitemia/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Plasmodium yoelii/efectos de los fármacos , Traslado Adoptivo , Animales , Antimaláricos/administración & dosificación , Artemisininas/administración & dosificación , Artemisininas/farmacología , Artesunato , Relación Dosis-Respuesta a Droga , Eritrocitos/parasitología , Femenino , Citometría de Flujo , Malaria/parasitología , Mefloquina/administración & dosificación , Mefloquina/farmacología , Ratones , Ratones Endogámicos C57BL , Parasitemia/parasitología , Fagocitos , Plasmodium berghei/crecimiento & desarrollo , Plasmodium yoelii/crecimiento & desarrollo
19.
Arch Pharm (Weinheim) ; 350(3-4)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28317157

RESUMEN

Despite recent declines in mortality, malaria remains an important global health problem. New therapies are needed, including new drugs with novel modes of action compared to existing agents. Among new potential therapeutic targets for malaria, inhibition of parasitic histone deacetylases (HDACs) is a promising approach. Homology modeling of PfHDAC1, a known target of some anti-plasmodial HDAC inhibitors, revealed a unique threonine residue at the rim of the active site in close proximity to the location of the cap group of vorinostat-type HDAC inhibitors. Aiming to obtain HDAC inhibitors with potent and preferential anti-plasmodial activity, we synthesized a mini-library of alkoxyamide-based HDAC inhibitors containing hydrogen bond acceptors in the cap group. Using a 5-step synthetic route, 12 new inhibitors were synthesized and assayed against Plasmodium falciparum asexual blood stage parasites (clones 3D7 and Dd2) and human cells (HepG2). The most active compound 6h (Pf3D7 IC50 : 0.07 µM; PfDd2 IC50 : 0.07 µM) was 25-fold more toxic against the parasite versus human HepG2 cells. Selected compounds were shown to cause hyperacetylation of P. falciparum histone H4, indicating inhibition of one or more PfHDACs.


Asunto(s)
Alcoholes/farmacología , Amidas/farmacología , Antimaláricos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Plasmodium falciparum/efectos de los fármacos , Alcoholes/síntesis química , Alcoholes/química , Amidas/síntesis química , Amidas/química , Antimaláricos/síntesis química , Antimaláricos/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...