Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros












Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6724, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112457

RESUMEN

The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.


Asunto(s)
Genómica , Isópteros , Filogenia , Isópteros/genética , Isópteros/clasificación , Animales , Genómica/métodos , Genoma de los Insectos
2.
Natl Sci Rev ; 11(8): nwae227, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39140006

RESUMEN

Swarming, as a special form of mating aggregation, is most noteworthy in insects of the orders Ephemeroptera, Diptera, and Trichoptera. Swarming in extant trichopterans is well understood in terms of sex composition, specific mating behaviors, and functional morphological specializations of adults, but an exploration of the evolution of such aggregative behaviors is hampered by the dearth of available examples from the fossil record as well as the ability to reliably distinguish the few gatherings as the result of swarming relative to other taphonomic or behavioral factors. Herein we describe five new fossil species of caddisflies preserved in mid-Cretaceous amber from Myanmar, all preserved as large aggregations. Monospecific aggregations of these five new species can be positively identified as swarms based on morphological traits of wing shape, as well as the presence of particular forms of sexual dimorphism. Results of a phylogenetic reconstruction of both molecular and morphological data as well as ancestral-trait reconstructions and tip-dating analyses indicate that swarming was likely present in the Triassic as a feature of the trichopteran groundplan. Since most Mesozoic insectivorous predators were diurnal based on morphological evidence, largely nocturnal caddisflies would have been freed from such pressures. The phylogeny also shows a correlation between the rise of nocturnal bat predators from the Paleocene or early Eocene and the repeated loss of swarming from various clades of caddisflies, revealing the potential impact of bat predation on reshaping the behavioral landscape of Trichoptera during the Cenozoic.

3.
MethodsX ; 13: 102794, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39036608

RESUMEN

Studying insect fossils, particularly those preserved as compressions in sedimentary matrices, can be difficult due to the taphonomic processes that often result to poor preservation and contrast of structures compared to the embedding matrix. To address this, we propose a user-friendly and simple methodology based on UV-light to study insect fossils and select specimens of interest for more advanced imagery exploration. While UV-light imaging has been previously applied to compressions of arthropod fossils, it typically involved laser light sources. Our approach allows the investigation of fossils using an affordable, compact, and portable UV-light source, along with a simple and replicable low-cost protocol. •The methodology is based on UV-light induced natural fluorescence of sediment and fossil remains.•UV-light is effective on compression fossils to gain natural contrast and enhance observation of body structures like veins or setae on wings.•UV-light is effective to reveal palaeoecological information such as pollen grains preserved on specimens, especially near or on putative pollinator or pollen-eating taxa.

4.
Zool Res ; 45(5): 983-989, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39085754

RESUMEN

Most described Mesozoic ants belong to stem groups that existed only during the Cretaceous period. Previously, the earliest known crown ants were dated to the Turonian (Late Cretaceous, ca. 94-90 million years ago (Ma)) deposits found in the USA, Kazakhstan, and Botswana. However, the recent discovery of an alate male ant in Kachin amber from the earliest Cenomanian (ca. 99 Ma), representing a new genus and species, Antiquiformica alata, revises the narrative on ant diversification. Antiquiformica can be distinctly differentiated from all known male stem ants by its geniculate antennae with elongated scape, extending far beyond the occipital margin of the head and half the length of the funiculus, as well as its partly reduced forewing venation. Furthermore, the combination of a one-segmented waist with a well-developed node, elongated scape extending beyond the occipital margin, and reduced forewing venation, particularly the completely reduced m-cu and rs-m crossveins and absence of rm and mcu closed cells, firmly places the fossil within the extant subfamily Formicinae. Fourier transform infrared spectroscopy (FTIR) confirmed that the amber containing Antiquiformica alata originated from the Kachin mines in Myanmar. This discovery significantly revises our understanding of the early evolution of Formicinae. The presence of Antiquiformica in Cenomanian amber indicates that the subfamily Formicinae emerged at least by the start of the Late Cretaceous, with crown ants likely originating earlier during the earliest Cretaceous or possibly the Late Jurassic, although paleontological evidence is lacking to support the latter hypothesis.


Asunto(s)
Hormigas , Evolución Biológica , Fósiles , Animales , Hormigas/anatomía & histología , Hormigas/clasificación , Hormigas/fisiología , Fósiles/anatomía & histología , Masculino , Ámbar , Filogenia
6.
Zookeys ; 1197: 261-272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680634

RESUMEN

The rare bee genus Habrophorula Lieftinck, 1974 is recorded for the first time from Vietnam. The genus is represented by a new species, Habrophorulabelladeceptrix Tran, Engel & Nguyen, sp. nov., from Cao Bang Province and can be most easily confused with H.nigripes Wu from China. The species is most easily differentiated by the unique form of the male terminalia but can also be distinguished by differences in integumental and setal coloration. A revised key is provided to the species of the genus. Females of the new species were collected at flowers of Saurauiaroxburghii Wall. and Saurauianapaulensis DC. (Actinidiaceae); males were collected at flowers of Lantanacamara L. (Verbenaceae).

7.
Curr Biol ; 34(8): 1762-1771.e3, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38521062

RESUMEN

Amber preserves an exceptional record of tiny, soft-bodied organisms and chemical environmental signatures, elucidating the evolution of arthropod lineages and the diversity, ecology, and biogeochemistry of ancient ecosystems. However, globally, fossiliferous amber deposits are rare in the latest Cretaceous and surrounding the Cretaceous-Paleogene (K-Pg) mass extinction.1,2,3,4,5 This faunal gap limits our understanding of arthropod diversity and survival across the extinction boundary.2,6 Contrasting hypotheses propose that arthropods were either relatively unaffected by the K-Pg extinction or experienced a steady decline in diversity before the extinction event followed by rapid diversification in the Cenozoic.2,6 These hypotheses are primarily based on arthropod feeding traces on fossil leaves and time-calibrated molecular phylogenies, not direct observation of the fossil record.2,7 Here, we report a diverse amber assemblage from the Late Cretaceous (67.04 ± 0.16 Ma) of the Big Muddy Badlands, Canada. The new deposit fills a critical 16-million-year gap in the arthropod fossil record spanning the K-Pg mass extinction. Seven arthropod orders and at least 11 insect families have been recovered, making the Big Muddy amber deposit the most diverse arthropod assemblage near the K-Pg extinction. Amber chemistry and stable isotopes suggest the amber was produced by coniferous (Cupressaceae) trees in a subtropical swamp near remnants of the Western Interior Seaway. The unexpected abundance of ants from extant families and the virtual absence of arthropods from common, exclusively Cretaceous families suggests that Big Muddy amber may represent a yet unsampled Late Cretaceous environment and provides evidence of a faunal transition before the end of the Cretaceous.


Asunto(s)
Ámbar , Artrópodos , Extinción Biológica , Fósiles , Fósiles/anatomía & histología , Animales , Artrópodos/anatomía & histología , Artrópodos/clasificación , Evolución Biológica , Biodiversidad , Canadá
8.
Zootaxa ; 5404(1): 102-123, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38480405

RESUMEN

A critical study of type material for Trigona lacteipennis Friese, 1900 and allied species is presented along with a discussion of literature data. This work reveals that T. lacteipennis is a junior subjective synonym of Melipona paupera Provancher, 1889 (new synonymy), a species currently classified placed in the genus Frieseomelitta. Similarly, T. lehmanni Friese, 1901 and T. parastigma Cockerell, 1918 are also junior subjective synonyms of Melipona paupera (new synonymies). Morphological characters, photographic illustrations of type specimens, and data on distribution are provided for Frieseomelitta paupera. Also, we describe a new species of Trigona cilipes species group, Trigona (Aphaneuropsis) silveirai sp. nov., which is very similar to the former and had been misidentified with it.


Asunto(s)
Himenópteros , Abejas , Animales , Distribución Animal
9.
Arthropod Struct Dev ; 79: 101346, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38520874

RESUMEN

The large abundance of termites is partially achieved by their defensive abilities. Stylotermitidae represented by a single extant genus, Stylotermes, is a member of a termite group Neoisoptera that encompasses 83% of termite species and 94% of termite genera and is characterized by the presence of the frontal gland. Within Neoisoptera, Stylotermitidae represents a species-poor sister lineage of all other groups. We studied the structure of the frontal, labral and labial glands in soldiers and workers of Stylotermes faveolus, and the composition of the frontal gland secretion in S. faveolus and Stylotermes halumicus. We show that the frontal gland is a small active secretory organ in soldiers and workers. It produces a cocktail of monoterpenes in soldiers, and some of these monoterpenes and unidentified proteins in workers. The labral and labial glands are developed similarly to other termite species and contribute to defensive activities (labral in both castes, labial in soldiers) or to the production of digestive enzymes (labial in workers). Our results support the importance of the frontal gland in the evolution of Neoisoptera. Toxic, irritating and detectable monoterpenes play defensive and pheromonal functions and are likely critical novelties contributing to the ecological success of these termites.


Asunto(s)
Cucarachas , Isópteros , Animales , Feromonas/metabolismo , Monoterpenos/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(12): e2308922121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38442141

RESUMEN

Fossils encompassing multiple individuals provide rare direct evidence of behavioral interactions among extinct organisms. However, the fossilization process can alter the spatial relationship between individuals and hinder behavioral reconstruction. Here, we report a Baltic amber inclusion preserving a female-male pair of the extinct termite species Electrotermes affinis. The head-to-abdomen contact in the fossilized pair resembles the tandem courtship behavior of extant termites, although their parallel body alignment differs from the linear alignment typical of tandem runs. To solve this inconsistency, we simulated the first stage of amber formation, the immobilization of captured organisms, by exposing living termite tandems to sticky surfaces. We found that the posture of the fossilized pair matches trapped tandems and differs from untrapped tandems. Thus, the fossilized pair likely is a tandem running pair, representing the direct evidence of the mating behavior of extinct termites. Furthermore, by comparing the postures of partners on a sticky surface and in the amber inclusion, we estimated that the male likely performed the leader role in the fossilized tandem. Our results demonstrate that past behavioral interactions can be reconstructed despite the spatial distortion of body poses during fossilization. Our taphonomic approach demonstrates how certain behaviors can be inferred from fossil occurrences.


Asunto(s)
Isópteros , Humanos , Femenino , Masculino , Animales , Ámbar , Extinción Psicológica , Fósiles , Postura
11.
Zookeys ; 1192: 197-212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425444

RESUMEN

Hitherto, only two species of the thysanopteran suborder Terebrantia have been reported from mid-Cretaceous Kachin amber (Myanmar). This is here expanded through the discovery of two new genera and species, described and figured as Parallelothripsseparatusgen. et sp. nov. and Didymothripsabdominalisgen. et sp. nov., both of the family Stenurothripidae. Both taxa have key apomorphies of the Stenurothripidae, allowing for a confident assignment as to family. Both species have characteristic comb-like anteromarginal setae, which are discussed along with structural differences between the two sexes. Cycad pollen was found on the thrips' bodies, providing further evidence that Thysanoptera were pollinators of gymnosperms during the mid-Cretaceous.

12.
Curr Biol ; 33(23): 5240-5246.e2, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38052162

RESUMEN

Female mosquitoes are among the most notorious blood-feeding insects, sometimes causing severe allergic responses or vectoring a variety of microbial pathogens.1,2 Hematophagy in insects is likely a feeding shift from plant fluids, with the piercing-sucking mouthparts serving as suitable exaptation for piercing vertebrates' skin. The origins of these habits are mired in an often-poor fossil record for many hematophagous lineages,3,4 particularly those of sufficient age, as to give insights into the paleoecological context in which blood feeding first appeared or even to arrive at gross estimates as to when such shifts have occurred. This is certainly the case for mosquitoes, a clade estimated molecularly to date back to the Jurassic.5 The known Mesozoic Culicidae are Late Cretaceous, assigned to the modern Anophelinae or to the extinct Burmaculicinae, sister to other Culicidae, all with mouthparts of a modern type. Here, we report the discovery, in Lower Cretaceous amber from Lebanon, of two conspecific male mosquitoes unexpectedly with piercing mouthparts, armed with denticulate sharp mandibles and laciniae. These male fossils were likely hematophagous. They represent a lineage that diverged earlier than Burmaculicinae, extending the definitive occurrence of the family into the Early Cretaceous and serving to narrow the ghost-lineage gap for mosquitoes.


Asunto(s)
Culicidae , Fósiles , Animales , Filogenia , Insectos , Conducta Alimentaria , Ámbar
13.
BMC Biol ; 21(1): 210, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37807035

RESUMEN

BACKGROUND: Phasmatodea (stick and leaf insects) play a central role on the debate regarding wing reduction and loss, and its wings are putative reacquisition from secondarily wingless ancestors based solely on extant species. A pivotal taxon in this respect is the species-poor Timematodea, consisting of approximately 21 wingless extant species, which form the sister group of all remaining winged or wingless stick and leaf insects, the Euphasmatodea. RESULTS: Herein, the new fossils of Timematodea from mid-Cretaceous Kachin amber are reported, with winged and wingless species co-occurring. The palaeogeographic distributions of all fossils of Holophasmatodea are summarized, showing their wide paleo-distributions. The phylogenetic analysis based on morphological characters confirms the earliest-diverging lineage of winged Breviala cretacea gen. et sp. nov. in Timematodea, and the possible relationships among all families of Holophasmatodea. These are critical for the reconstruction of patterns of wing evolution in early Phasmatodea. CONCLUSIONS: The new fossils suggest that Timematodea once had wings, at least during the mid-Cretaceous. The palaeogeographic occurrences imply that Timematodea probably have been widely distributed since at least the Jurassic. The phylogenetic analysis with the ancestral-state reconstruction of wings indicates that the common ancestors of Holophasmatodea were winged, the reductions and losses of wings among Timematodea and Euphasmatodea have occurred independently since at least the Cretaceous, and the reduction or loss of the forewing earlier than the hind wings.


Asunto(s)
Ámbar , Fósiles , Animales , Filogenia , Insectos , Alas de Animales/anatomía & histología , Hojas de la Planta
14.
Biol Lett ; 19(9): 20230307, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37727076

RESUMEN

Weevils represent one of the most prolific radiations of beetles and the most diverse group of herbivores on land. The phylogeny of weevils (Curculionoidea) has received extensive attention, and a largely satisfactory framework for their interfamilial relationships has been established. However, a recent phylogenomic study of Curculionoidea based on anchored hybrid enrichment (AHE) data yielded an abnormal placement for the family Belidae (strongly supported as sister to Nemonychidae + Anthribidae). Here we reanalyse the genome-scale AHE data for Curculionoidea using various models of molecular evolution and data filtering methods to mitigate anticipated systematic errors and reduce compositional heterogeneity. When analysed with the infinite mixture model CAT-GTR or using appropriately filtered datasets, Belidae are always recovered as sister to the clade (Attelabidae, (Caridae, (Brentidae, Curculionidae))), which is congruent with studies based on morphology and other sources of molecular data. Although the relationships of the 'higher Curculionidae' remain challenging to resolve, we provide a consistent and robust backbone phylogeny of weevils. Our extensive analyses emphasize the significance of data curation and modelling across-site compositional heterogeneity in phylogenomic studies.


Asunto(s)
Escarabajos , Gorgojos , Animales , Gorgojos/genética , Filogenia , Curaduría de Datos , Evolución Molecular
15.
Zookeys ; 1172: 239-312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547181

RESUMEN

Stingless bees (Meliponini) are a ubiquitous and diverse element of the pantropical melittofauna, and have significant cultural and economic importance. This review outlines their diversity, and provides identification keys based on external morphology, brief accounts for each of the recognized genera, and an updated checklist of all living and fossil species. In total there are currently 605 described extant species in 45 extant genera, and a further 18 extinct species in nine genera, seven of which are extinct. A new fossil genus, Adactylurina Engel, gen. nov., is also described for a species in Miocene amber from Ethiopia. In addition to the systematic review, the biology of stingless bees is summarized with an emphasis on aspects related to their nesting biology and architecture.

16.
Insects ; 14(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37504620

RESUMEN

Two new genera and species of Dermaptera are described from the Middle Jurassic Jiulongshan Formation of Daohugou, Inner Mongolia, China: Applanatiforceps angustus gen. et sp. nov. in the archidermapteran family Protodiplatyidae, and Ekpagloderma gracilentum gen et sp. nov. in the eodermapteran family Semenoviolidae. Applanatiforceps shares the typical characters of the extinct suborder Archidermaptera (e.g., pentamerous meta tarsi, filiform and multimerous cerci) and externalized ovipositor. The family identity of the Protodiplatyidae can be further distinguished by comparing this new genus with other genera of the Protodiplatyidae. As a result of its large compound eyes, tegmina without venation, body sparsely setose, legs rather short and slender, and shape of the veinless tegmina, Ekpagloderma is classified in the subfamily Aglyptodermatinae. Ekpagloderma not only has the typical features of the Aglyptodermatinae, but also exhibits a more primitive slender segmented cerci, which is different from all other genera of Eodermaptera. In fact, the diversity of Eodermaptera as known today indicates some of the challenges in understanding the suborder and whether or not it is monophyletic as historically construed, or if the separation of Turanodermaptera is justified.

17.
Proc Biol Sci ; 290(2001): 20230855, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37357866

RESUMEN

Among hundreds of insect families, Hermatobatidae (commonly known as coral treaders) is one of the most unique. They are small, wingless predaceous bugs in the suborder Heteroptera. Adults are almost black in colour, measuring about 5 mm in body length and 3 mm in width. Thirteen species are known from tropical coral reefs or rocky shores, but their origin and evolutionary adaptation to their unusual marine habitat were unexplored. We report here the genome and metagenome of Hermatobates lingyangjiaoensis, hitherto known only from its type locality in the South China Sea. We further reconstructed the evolutionary history and origin of these marine bugs in the broader context of Arthropoda. The dated phylogeny indicates that Hexapoda diverged from their marine sister groups approximately 498 Ma and that Hermatobatidae originated 192 Ma, indicating that they returned to an oceanic life some 300 Myr after their ancestors became terrestrial. Their origin is consistent with the recovery of tropical reef ecosystems after the end-Triassic mass extinction, which might have provided new and open niches for them to occupy and thrive. Our analyses also revealed that both the genome changes and the symbiotic bacteria might have contributed to adaptations necessary for life in the sea.


Asunto(s)
Antozoos , Artrópodos , Heterópteros , Animales , Filogenia , Antozoos/genética , Ecosistema , Arrecifes de Coral , Insectos
18.
Zookeys ; 1166: 1-32, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323476

RESUMEN

Species of the potter wasp genus Allorhynchium van der Vecht (Eumeninae: Odynerini) occurring in Vietnam are presented. Seven species have been recorded from Vietnam. Of them, three species are described as new to science: Allorhynchiumlatum Nguyen, Tran & MT Nguyen, sp. nov., A.moerum Nguyen & AD Nguyen, sp. nov., and A.setosum Nguyen & Engel, sp. nov., and one species, A.argentatum (Fabricius, 1804), is recorded from Vietnam for the first time. An updated key to the Oriental species of the genus is presented.

19.
Zookeys ; 1144: 171-196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215621

RESUMEN

The Vietnamese fauna of bees in the Anthidiellum Cockerell (Megachilinae, Anthidiini) is reviewed. Seven species are recognized, representing two subgenera. Five new species are described and figured as: Anthidiellum (Clypanthidium) nahang Tran, Engel & Nguyen, sp. nov., A. (Pycnanthidium) ayun Tran, Engel & Nguyen, sp. nov., A. (P.) chumomray Tran, Engel & Nguyen, sp. nov., A. (P.) flavaxilla Tran, Engel & Nguyen, sp. nov., and A. (P.) cornu Tran, Engel & Nguyen, sp. nov. from the northern and central highlands of Vietnam. Two previously described species are newly recorded for the fauna: A. (P.) carinatum (Wu) and A. (P.) coronum (Wu), with the male of the latter species described and illustrated for the first time. An identification key is provided for all species of Anthidiellum occurring in Vietnam.

20.
Trends Ecol Evol ; 38(8): 749-759, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37062597

RESUMEN

Inferring insect pollination from compression fossils and amber inclusions is difficult because of a lack of consensus on defining an insect pollinator and the challenge of recognizing this ecological relationship in deep time. We propose a conceptual definition for such insects and an operational classification into pollinator or presumed pollinator. Using this approach, we identified 15 insect families that include fossil pollinators and show that pollination relationships have existed since at least the Upper Jurassic (~163 Ma). Insects prior to this can only be classified as presumed pollinators. This gives a more nuanced insight into the origin and evolution of an ecological relationship that is vital to the establishment, composition and conservation of modern terrestrial ecosystems.


Asunto(s)
Ecosistema , Polinización , Animales , Insectos , Fósiles , Flores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...