Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 33(8): 1624-1639.e9, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34174197

RESUMEN

Iron overload is positively associated with diabetes risk. However, the role of iron in adipose tissue remains incompletely understood. Here, we report that transferrin-receptor-1-mediated iron uptake is differentially required for distinct subtypes of adipocytes. Notably, adipocyte-specific transferrin receptor 1 deficiency substantially protects mice from high-fat-diet-induced metabolic disorders. Mechanistically, low cellular iron levels have a positive impact on the health of the white adipose tissue and can restrict lipid absorption from the intestine through modulation of vesicular transport in enterocytes following high-fat diet feeding. Specific reduction of adipocyte iron by AAV-mediated overexpression of the iron exporter Ferroportin1 in adult mice effectively mimics these protective effects. In summary, our studies highlight an important role of adipocyte iron in the maintenance of systemic metabolism through an adipocyte-enterocyte axis, offering an additional level of control over caloric influx into the system after feeding by regulating intestinal lipid absorption.


Asunto(s)
Adipocitos , Tejido Adiposo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa , Hierro/metabolismo , Lípidos , Ratones , Obesidad/metabolismo
2.
J Lipid Res ; 59(3): 475-487, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29335275

RESUMEN

Lipogenesis in liver is highest in the postprandial state; insulin activates SREBP-1c, which transcriptionally activates genes involved in FA synthesis, whereas glucose activates carbohydrate-responsive element-binding protein (ChREBP), which activates both glycolysis and FA synthesis. Whether SREBP-1c and ChREBP act independently of one another is unknown. Here, we characterized mice with liver-specific deletion of ChREBP (L-Chrebp-/- mice). Hepatic ChREBP deficiency resulted in reduced mRNA levels of glycolytic and lipogenic enzymes, particularly in response to sucrose refeeding following fasting, a dietary regimen that elicits maximal lipogenesis. mRNA and protein levels of SREBP-1c, a master transcriptional regulator of lipogenesis, were also reduced in L-Chrebp-/- livers. Adeno-associated virus-mediated restoration of nuclear SREBP-1c in L-Chrebp-/- mice normalized expression of a subset of lipogenic genes, while not affecting glycolytic genes. Conversely, ChREBP overexpression alone failed to support expression of lipogenic genes in the livers of mice lacking active SREBPs as a result of Scap deficiency. Together, these data show that SREBP-1c and ChREBP are both required for coordinated induction of glycolytic and lipogenic mRNAs. Whereas SREBP-1c mediates insulin's induction of lipogenic genes, ChREBP mediates glucose's induction of both glycolytic and lipogenic genes. These overlapping, but distinct, actions ensure that the liver synthesizes FAs only when insulin and carbohydrates are both present.


Asunto(s)
Glucólisis , Lipogénesis , Hígado/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/deficiencia , Factores de Transcripción/deficiencia
3.
Semin Cell Dev Biol ; 81: 98-109, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28736205

RESUMEN

Sterol regulatory element-binding proteins (SREBPs), master transcriptional regulators of cholesterol and fatty acid synthesis, have been found to contribute to a diverse array of cellular processes. In this review, we focus on genetically engineered mice in which the activities of six components of the SREBP gene pathway, namely SREBP-1, SREBP-2, Scap, Insig-1, Insig-2, or Site-1 protease have been altered through gene knockout or transgenic approaches. In addition to the expected impacts on lipid metabolism, manipulation of these genes in mice is found to affect a wide array of developmental and physiologic processes ranging from interferon signaling in macrophages to synaptic transmission in the brain. The findings reviewed herein provide a blueprint to guide future studies defining the complex interactions between lipid biology and the physiologic processes of many distinct organ systems.


Asunto(s)
Regulación de la Expresión Génica , Hígado/metabolismo , Transducción de Señal/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Animales , Humanos , Metabolismo de los Lípidos/genética , Ratones , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
4.
J Lipid Res ; 58(10): 1988-1998, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28630260

RESUMEN

SREBP-2 activates transcription of all genes needed for cholesterol biosynthesis. To study SREBP-2 function in the intestine, we generated a mouse model (Vil-BP2-/- ) in which Cre recombinase ablates SREBP-2 in intestinal epithelia. Intestines of Vil-BP2-/- mice had reduced expression of genes required for sterol synthesis, in vivo sterol synthesis rates, and epithelial cholesterol contents. On a cholesterol-free diet, the mice displayed chronic enteropathy with histological abnormalities of both villi and crypts, growth restriction, and reduced survival that was prevented by supplementation of cholesterol in the diet. Likewise, SREBP-2-deficient enteroids required exogenous cholesterol for growth. Blockade of luminal cholesterol uptake into enterocytes with ezetimibe precipitated acutely lethal intestinal damage in Vil-BP2-/- mice, highlighting the critical interplay in the small intestine of sterol absorption via NPC1L1 and sterol synthesis via SREBP-2 in sustaining the intestinal mucosa. These data show that the small intestine requires SREBP-2 to drive cholesterol synthesis that sustains the intestinal epithelia when uptake of cholesterol from the gut lumen is not available, and provide a unique example of cholesterol auxotrophy expressed in an intact, adult mammal.


Asunto(s)
Colesterol/biosíntesis , Ezetimiba/farmacología , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Proteína 2 de Unión a Elementos Reguladores de Esteroles/deficiencia , Animales , Colesterol en la Dieta/farmacología , Colesterol en la Dieta/uso terapéutico , Eliminación de Gen , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/genética , Mucosa Intestinal/efectos de los fármacos , Intestinos/citología , Intestinos/patología , Ratones , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
5.
J Biol Chem ; 292(22): 9382-9393, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28416613

RESUMEN

Cholesterol synthesis is a highly oxygen-consuming process. As such, oxygen deprivation (hypoxia) limits cholesterol synthesis through incompletely understood mechanisms mediated by the oxygen-sensitive transcription factor hypoxia-inducible factor 1α (HIF-1α). We show here that HIF-1α links pathways for oxygen sensing and feedback control of cholesterol synthesis in human fibroblasts by directly activating transcription of the INSIG-2 gene. Insig-2 is one of two endoplasmic reticulum membrane proteins that inhibit cholesterol synthesis by mediating sterol-induced ubiquitination and subsequent endoplasmic reticulum-associated degradation of the rate-limiting enzyme in the pathway, HMG-CoA reductase (HMGCR). Consistent with the results in cultured cells, hepatic levels of Insig-2 mRNA were enhanced in mouse models of hypoxia. Moreover, pharmacologic stabilization of HIF-1α in the liver stimulated HMGCR degradation via a reaction that requires the protein's prior ubiquitination and the presence of the Insig-2 protein. In summary, our results show that HIF-1α activates INSIG-2 transcription, leading to accumulation of Insig-2 protein, which binds to HMGCR and triggers its accelerated ubiquitination and degradation. These results indicate that HIF-mediated induction of Insig-2 and degradation of HMGCR are physiologically relevant events that guard against wasteful oxygen consumption and inappropriate cell growth during hypoxia.


Asunto(s)
Hidroximetilglutaril-CoA Reductasas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Hígado/metabolismo , Proteínas de la Membrana/biosíntesis , Proteolisis , Transcripción Genética , Animales , Hipoxia de la Célula , Línea Celular Transformada , Fibroblastos/metabolismo , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones
6.
J Lipid Res ; 56(8): 1560-71, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25896350

RESUMEN

SREBP cleavage-activating protein (Scap) is an endoplasmic reticulum membrane protein required for cleavage and activation of sterol regulatory element-binding proteins (SREBPs), which activate the transcription of genes in sterol and fatty acid biosynthesis. Liver-specific loss of Scap is well tolerated; hepatic synthesis of sterols and fatty acids is reduced, but mice are otherwise healthy. To determine whether Scap loss is tolerated in the intestine, we generated a mouse model (Vil-Scap(-)) in which tamoxifen-inducible Cre-ER(T2), a fusion protein of Cre recombinase with a mutated ligand binding domain of the human estrogen receptor, ablates Scap in intestinal mucosa. After 4 days of tamoxifen, Vil-Scap(-) mice succumb with a severe enteropathy and near-complete collapse of intestinal mucosa. Organoids grown ex vivo from intestinal crypts of Vil-Scap(-) mice are readily killed when Scap is deleted by 4-hydroxytamoxifen. Death is prevented when culture medium is supplemented with cholesterol and oleate. These data show that, unlike the liver, the intestine requires Scap to sustain tissue integrity by maintaining the high levels of lipid synthesis necessary for proliferation of intestinal crypts.


Asunto(s)
Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Esteroles/biosíntesis , Animales , Proliferación Celular/efectos de los fármacos , Femenino , Eliminación de Gen , Humanos , Enfermedades Intestinales/genética , Enfermedades Intestinales/metabolismo , Enfermedades Intestinales/patología , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Especificidad de Órganos , Tamoxifeno/farmacología
7.
J Biol Chem ; 289(4): 2148-56, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24337570

RESUMEN

Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes.


Asunto(s)
Colesterol/biosíntesis , Enterocitos/metabolismo , Proteínas de la Membrana/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Animales , Células Cultivadas , Colesterol/genética , Enterocitos/citología , Lipidosis/genética , Lipidosis/metabolismo , Hígado/citología , Hígado/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
8.
J Lipid Res ; 53(7): 1359-68, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22523394

RESUMEN

Enterocyte cholesterol homeostasis reflects aggregated rates of sterol synthesis, efflux, and uptake from plasma and gut lumen. Cholesterol synthesis and LDL uptake are coordinately regulated by sterol regulatory element-binding proteins (SREBP), whereas sterol efflux is regulated by liver X receptors (LXR). How these processes are coordinately regulated in enterocytes, the site of cholesterol absorption, is not well understood. Here, we treat mice with ezetimibe to investigate the effect of blocking cholesterol absorption on intestinal SREBPs, LXRs, and their effectors. Ezetimibe increased nuclear SREBP-2 8-fold. HMG-CoA reductase (HMGR) and LDL receptor (LDLR) mRNA levels increased less than 3-fold, whereas their protein levels increased 30- and 10-fold, respectively. Expression of inducible degrader of LDLR (IDOL), an LXR-regulated gene that degrades LDLRs, was reduced 50% by ezetimibe. Coadministration of ezetimibe with the LXR agonist T0901317 abolished the reduction in IDOL and prevented the increase in LDLR protein. Ezetimibe-stimulated LDLR expression was independent of proprotein convertase subtilisin/kexin type 9 (PSCK9), a protein that degrades LDLRs. To maintain cholesterol homeostasis in the face of ezetimibe, enterocytes boost LDL uptake by increasing LDLR number, and they boost sterol synthesis by increasing HMGR and other cholesterologenic genes. These studies reveal a hitherto undescribed homeostatic network in enterocytes triggered by blockade of cholesterol absorption.


Asunto(s)
Azetidinas/farmacología , Colesterol/metabolismo , Enterocitos/efectos de los fármacos , Homeostasis/efectos de los fármacos , Absorción Intestinal/efectos de los fármacos , Animales , Enterocitos/citología , Enterocitos/metabolismo , Ezetimiba , Mucosa Intestinal/metabolismo , Intestinos/química , Ratones , Ratones Endogámicos C57BL , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Regulación hacia Arriba/efectos de los fármacos
9.
J Clin Invest ; 116(9): 2356-65, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16955138

RESUMEN

Insig-1 and Insig-2 are regulatory proteins that restrict the cholesterol biosynthetic pathway by preventing proteolytic activation of SREBPs and by enhancing degradation of HMG-CoA reductase. Here, we created Insig-double-knockout (Insig-DKO) mice that are homozygous for null mutations in Insig-1 and Insig-2. After 18.5 days of development, 96% of Insig-DKO embryos had defects in midline facial development, ranging from cleft palate (52%) to complete cleft face (44%). Middle and inner ear structures were abnormal, but teeth and skeletons were normal. The animals were lethargic and runted; they died within 1 day of birth. The livers and heads of Insig-DKO embryos overproduced sterols, causing a marked buildup of sterol intermediates. Treatment of pregnant mice with the HMG-CoA reductase inhibitor lovastatin reduced sterol synthesis in Insig-DKO embryos and reduced the pre-cholesterol intermediates. This treatment ameliorated the clefting syndrome so that 54% of Insig-DKO mice had normal faces, and only 7% had cleft faces. We conclude that buildup of pre-cholesterol sterol intermediates interferes with midline fusion of facial structures in mice. These findings have implications for the pathogenesis of the cleft palate component of Smith-Lemli-Opitz syndrome and other human malformation syndromes in which mutations in enzymes catalyzing steps in cholesterol biosynthesis produce a buildup of sterol intermediates.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Lovastatina/uso terapéutico , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Anomalías de la Boca/genética , Animales , Huesos/efectos de los fármacos , Huesos/embriología , Femenino , Ratones , Ratones Noqueados , Anomalías de la Boca/prevención & control , Embarazo , Esteroles/metabolismo
10.
J Clin Invest ; 115(9): 2489-98, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16100574

RESUMEN

End-product feedback inhibition of cholesterol synthesis was first demonstrated in living animals by Schoenheimer 72 years ago. Current studies define Insig proteins as essential elements of this feedback system in mouse liver. In cultured cells, Insig proteins are required for sterol-mediated inhibition of the processing of sterol regulatory element-binding proteins (SREBPs) to their nuclear forms. We produced mice with germline disruption of the Insig2 gene and Cre-mediated disruption of the Insig1 gene in liver. On a chow diet, these double-knockout mice overaccumulated cholesterol and triglycerides in liver. Despite this accumulation, levels of nuclear SREBPs and mRNAs for SREBP target genes in lipogenic pathways were not reduced. Whereas cholesterol feeding reduced nuclear SREBPs and lipogenic mRNAs in wild-type mice, this feedback response was severely blunted in the double-knockout mice, and synthesis of cholesterol and fatty acids was not repressed. The amount of HMG-CoA reductase protein was elevated out of proportion to the mRNA in the double-knockout mice, apparently owing to the failure of cholesterol to accelerate degradation of the enzyme. These studies indicate that the essential elements of the regulatory pathway for lipid synthesis function in liver as they do in cultured cells.


Asunto(s)
Colesterol/biosíntesis , Retroalimentación Fisiológica , Proteínas de la Membrana/metabolismo , Alelos , Animales , Encéfalo/metabolismo , Colesterol/metabolismo , Colesterol en la Dieta , Femenino , Marcación de Gen , Lípidos , Hígado/citología , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Triglicéridos/metabolismo
11.
Cell Metab ; 1(1): 41-51, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16054043

RESUMEN

The escort protein SCAP transports SREBPs from ER to Golgi where the active domains are released to activate genes for fatty acid (FA) and cholesterol synthesis. Mice with conditional SCAP deficiency in liver (L-Scap-) manifest marked reductions in hepatic lipid synthesis. Here, we show that the decreased FA synthesis in liver is balanced by an equal increase in nonhepatic tissues, primarily adipose tissue. Extrahepatic synthesis of FAs preserves adipose mass, even when L-Scap- mice consume a fat-free diet. This compensatory response disappears upon fasting, implicating a role for insulin, the major hormonal activator of FA synthesis. This response is mediated by an insulin-dependent increase in adipocyte SREBP-1c and its target mRNAs. In epididymal fat of L-Scap- mice, phosphorylated Akt, Glut-4 mRNA, and glucose uptake are also increased, indicating insulin hypersensitivity. Plasma VLDL triglycerides are dramatically reduced in L-Scap- mice, underscoring the benefits of synthesizing FAs in fat rather than liver.


Asunto(s)
Tejido Adiposo/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/deficiencia , Animales , Peso Corporal , Colesterol/metabolismo , Desoxiglucosa/farmacocinética , Regulación hacia Abajo , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Immunoblotting , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Transgénicos , Tamaño de los Órganos , Fenotipo , Fosforilación , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Triglicéridos/metabolismo , Regulación hacia Arriba
12.
J Clin Invest ; 113(8): 1168-75, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15085196

RESUMEN

In the current studies we generated transgenic mice that overexpress human Insig-1 in the liver under a constitutive promoter. In cultured cells Insig-1 and Insig-2 have been shown to block lipid synthesis in a cholesterol-dependent fashion by inhibiting proteolytic processing of sterol regulatory element-binding proteins (SREBPs), membrane-bound transcription factors that activate lipid synthesis. Insig's exert this action in the ER by binding SREBP cleavage-activating protein (SCAP) and preventing it from escorting SREBPs to the Golgi apparatus where the SREBPs are processed to their active forms. In the livers of Insig-1 transgenic mice, the content of all nuclear SREBPs (nSREBPs) was reduced and declined further upon feeding of dietary cholesterol. The nuclear content of the insulin-induced SREBP isoform, SREBP-1c, failed to increase to a normal extent upon refeeding on a high-carbohydrate diet. The nSREBP deficiency produced a marked reduction in the levels of mRNAs encoding enzymes required for synthesis of cholesterol, fatty acids, and triglycerides. Plasma cholesterol levels were strongly reduced, and plasma triglycerides did not exhibit their normal rise after refeeding. These results provide in vivo support for the hypothesis that nSREBPs are essential for high levels of lipid synthesis in the liver and indicate that Insig's modulate nSREBP levels by binding and retaining SCAP in the ER.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Unión al ADN/metabolismo , Insulina/farmacología , Lípidos/biosíntesis , Hígado/metabolismo , Proteínas de la Membrana/fisiología , Factores de Transcripción , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas de Unión al ADN/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/análisis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...