Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Syst Appl Microbiol ; 47(5): 126539, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39029335

RESUMEN

Histamine is an important biogenic amine known to impact a variety of patho-physiological processes ranging from allergic reactions, gut-mediated anti-inflammatory responses, and neurotransmitter activity. Histamine is found both endogenously within specialized host cells and exogenously in microbes. Exogenous histamine is produced through the decarboxylation of the amino acid L-histidine by bacterial-derived histidine decarboxylase enzymes. To investigate how widespread histamine production is across bacterial species, we examined 102,018 annotated genomes in the Integrated Microbial Genomes Database and identified 3,679 bacterial genomes (3.6 %) which possess the enzymatic machinery to generate histamine. These bacteria belonged to 10 phyla: Bacillota, Bacteroidota, Actinomycetota, Pseudomonadota, Lentisphaerota, Fusobacteriota, Armatimonadota, Cyanobacteriota, Thermodesulfobacteriota, and Verrucomicrobiota. The majority of the identified bacteria were terrestrial or aquatic in origin, although several bacteria originated in the human gut microbiota. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted metabolomics to confirm our genome discoveries correlated with L-histidine-to-histamine conversion in a chemically defined bacterial growth medium by a cohort of select environmental and human gut bacteria. We found that environmental microbes Vibrio harveyi, Pseudomonas fluorescens and Streptomyces griseus generated considerable levels of histamine (788 - 8,730 ng/mL). Interestingly, we found higher concentrations of histamine produced by gut-associated Fusobacterium varium, Clostridium perfringens, Limosilactobacillus reuteri and Morganella morganii (8,510--82,400 ng/mL). This work expands our knowledge of histamine production by diverse microbes.

2.
bioRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38765995

RESUMEN

Rotavirus causes life-threatening diarrhea in children, resulting in ∼200,000 deaths/year. The current treatment during infection is Oral Rehydration Solution which successfully replenishes fluids but does not alleviate diarrhea volume or severity. As a result, there is an urgent need to better understand rotavirus pathophysiology and develop more effective pediatric therapeutics. Rotavirus primarily infects the tips of small intestinal villi, yet has far-reaching effects on cell types distant from infected cells. We recently identified that rotavirus infected cells release the purinergic signaling molecule ADP, which activates P2Y1 receptors on nearby uninfected cells in vitro . To elucidate the role of purinergic signaling via P2Y1 receptors during rotavirus infection in vivo , we used the mouse-like rotavirus strain D6/2 which generates a severe infection in mice. C57BL/6J mouse pups were given an oral gavage of D6/2 rotavirus and assessed over the course of 5-7 days. Beginning at day 1 post infection, infected pups were treated daily by oral gavage with saline or 4 mg/kg MRS2500, a selective P2Y1 antagonist. Mice were monitored for diarrhea severity, diarrhea incidence, and viral shedding. Neonatal mice were euthanized at days 3 and 5 post-infection and small intestine was collected to observe infection. MRS2500 treatment decreased the severity, prevalence, and incidence of rotavirus diarrhea. Viral stool shedding, assessed by qPCR for rotavirus gene levels, revealed that MRS2500 treated pups had significantly lower viral shedding starting at day 4 post infection compared to saline treated pups, which suggests P2Y1 signaling may enhance rotavirus replication. Finally, we found that inhibition of P2Y1 with MRS2500 limited transmitted rotavirus diarrhea to uninfected pups within a litter. Together, these results suggest that P2Y1 signaling is involved in the pathogenesis of a homologous murine rotavirus strain, making P2Y1 receptors a promising anti-diarrheal, anti-viral therapeutic target to reduce rotavirus disease burden.

3.
bioRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38765992

RESUMEN

Acute gastroenteritis remains the second leading cause of death among children under the age of 5 worldwide. While enteric viruses are the most common etiology, the drivers of their virulence remain incompletely understood. We recently found that cells infected with rotavirus, the most prevalent enteric virus in infants and young children, initiate hundreds of intercellular calcium waves that enhance both fluid secretion and viral spread. Understanding how rotavirus triggers intercellular calcium waves may allow us to design safer, more effective vaccines and therapeutics, but we still lack a mechanistic understanding of this process. In this study, we used existing virulent and attenuated rotavirus strains, as well as reverse engineered recombinants, to investigate the role of rotavirus nonstructural protein 4 (NSP4) in intercellular calcium wave induction using in vitro , organoid, and in vivo model systems. We found that the capacity to induce purinergic intercellular calcium waves (ICWs) segregated with NSP4 in both simian and murine-like rotavirus backgrounds, and NSP4 expression alone was sufficient to induce ICWs. NSP4's ability to function as a viroporin, which conducts calcium out of the endoplasmic reticulum, was necessary for ICW induction. Furthermore, viroporin activity and the resulting ICWs drove transcriptional changes indicative of innate immune activation, which were lost upon attenuation of viroporin function. Multiple aspects of RV disease severity in vivo correlated with the generation of ICWs, identifying a critical link between viroporin function, intercellular calcium waves, and enteric viral virulence.

4.
J Vis Exp ; (203)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38314824

RESUMEN

Calcium signaling is an integral regulator of nearly every tissue. Within the intestinal epithelium, calcium is involved in the regulation of secretory activity, actin dynamics, inflammatory responses, stem cell proliferation, and many other uncharacterized cellular functions. As such, mapping calcium signaling dynamics within the intestinal epithelium can provide insight into homeostatic cellular processes and unveil unique responses to various stimuli. Human intestinal organoids (HIOs) are a high-throughput, human-derived model to study the intestinal epithelium and thus represent a useful system to investigate calcium dynamics. This paper describes a protocol to stably transduce HIOs with genetically encoded calcium indicators (GECIs), perform live fluorescence microscopy, and analyze imaging data to meaningfully characterize calcium signals. As a representative example, 3-dimensional HIOs were transduced with lentivirus to stably express GCaMP6s, a green fluorescent protein-based cytosolic GECI. The engineered HIOs were then dispersed into a single-cell suspension and seeded as monolayers. After differentiation, the HIO monolayers were infected with rotavirus and/or treated with drugs known to stimulate a calcium response. An epifluorescence microscope fitted with a temperature-controlled, humidified live-imaging chamber allowed for long-term imaging of infected or drug-treated monolayers. Following imaging, acquired images were analyzed using the freely available analysis software, ImageJ. Overall, this work establishes an adaptable pipeline for characterizing cellular signaling in HIOs.


Asunto(s)
Calcio , Intestinos , Humanos , Calcio/análisis , Mucosa Intestinal/química , Organoides/química , Microscopía Fluorescente/métodos
5.
Methods Mol Biol ; 2751: 33-46, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38265708

RESUMEN

Recent technological advances in microscopy have facilitated novel approaches to investigate host-pathogen interactions. In particular, improvements in both microscope hardware and engineered biosensors have helped to overcome barriers to live-cell imaging with fluorescence microscopy. Live fluorescent microscopy allows for the detection of discrete signaling events and protein localization, improving our ability to assess the effects of pharmacologic agents, microbes, or infection with high temporal resolution. Here we describe a protocol for long-term live-cell fluorescence imaging of virus infected cell lines.


Asunto(s)
Interacciones Microbiota-Huesped , Imagen Óptica , Interacciones Huésped-Patógeno , Línea Celular , Microscopía Fluorescente
6.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G107-G119, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37987757

RESUMEN

Nucleotides are potent extracellular signaling molecules during homeostasis, infection, and injury due to their ability to activate purinergic receptors. The nucleotide ATP activates P2X receptors (P2RXs), whereas the nucleotides ADP, ATP, UTP, and UDP-glucose selectively activate different P2Y receptors (P2RYs). Several studies have established crucial roles for P2 receptors during intestinal inflammatory and infectious diseases, yet the most extensive characterization of purinergic signaling has focused on immune cells and the central and enteric nervous systems. As epithelial cells serve as the first barrier against irritants and infection, we hypothesized that the gut epithelium may express multiple purinergic receptors that respond to extracellular nucleotide signals. Using the Human Protein Atlas and Gut Cell Survey, we queried single-cell RNA sequencing (RNAseq) data for the P2 purinergic receptors in the small and large intestines. In silico analysis reveals robust mRNA expression of P2RY1, P2RY2, P2RY11, and P2RX4 throughout the gastrointestinal tract. Human intestinal organoids exhibited a similar expression pattern with a prominent expression of P2RY1, P2RY2, and P2RX4, but this purinergic receptor repertoire was not conserved in T84, Caco2, and HT29 intestinal epithelial cell lines. Finally, P2YR1 and P2YR2 agonists elicited robust calcium responses in human intestinal organoids, but calcium responses were weaker or absent in the cell lines. These findings suggest that the gastrointestinal epithelia respond to extracellular purinergic signaling via P2RY1, P2RY2, P2RY11, and P2RX4 receptors and highlight the benefit of using intestinal organoids as a model of intestinal purinergic signaling.NEW & NOTEWORTHY Several studies have revealed crucial roles for P2 receptors during inflammatory and infectious diseases, however, these have largely been demonstrated in immune cells and the enteric nervous system. Although epithelial cells serve as the first barrier against infection and inflammation, the role of purinergic signaling within the gastrointestinal tract remains largely unknown. This work expands our knowledge of purinergic receptor distribution and relative expression along the intestine.


Asunto(s)
Adenosina Trifosfato , Enfermedades Transmisibles , Humanos , Calcio/metabolismo , Células CACO-2 , Nucleótidos , Receptores Purinérgicos , Receptores Purinérgicos P2Y2
7.
mBio ; 15(1): e0214523, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38112482

RESUMEN

IMPORTANCE: Many viruses exploit host Ca2+ signaling to facilitate their replication; however, little is known about how Ca2+ signals from different host and viral channels contribute to the overall dysregulation of Ca2+ signaling or promote virus replication. Using cells lacking IP3R, a host ER Ca2+ channel, we delineated intracellular Ca2+ signals within virus-infected cells and intercellular Ca2+ waves (ICWs), which increased Ca2+ signaling in neighboring, uninfected cells. In infected cells, IP3R was dispensable for rotavirus-induced Ca2+ signaling and replication, suggesting the rotavirus NSP4 viroporin supplies these signals. However, IP3R-mediated ICWs increase rotavirus replication kinetics and spread, indicating that the Ca2+ signals from the ICWs may prime nearby uninfected cells to better support virus replication upon eventual infection. This "pre-emptive priming" of uninfected cells by exploiting host intercellular pathways in the vicinity of virus-infected cells represents a novel mechanism for viral reprogramming of the host to gain a replication advantage.


Asunto(s)
Señalización del Calcio , Interacciones Microbiota-Huesped , Receptores de Inositol 1,4,5-Trifosfato , Rotavirus , Retículo Endoplásmico/metabolismo , Rotavirus/genética , Rotavirus/metabolismo , Transducción de Señal , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo
8.
STAR Protoc ; 4(3): 102540, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37682718

RESUMEN

We present a protocol for measuring the pH of cell-free bacterial-conditioned media based on changes in the ultraviolet-visible (UV-Vis) absorbance spectrum using the pH indicator dye litmus. This protocol includes detailed procedures for performing bacterial culturing, examining bacterial growth, collecting cell-free supernatant, litmus dye addition, and pH-based calibration curve preparations. This assay has been designed for flexible formatting that can accommodate both high-volume and low-volume sample sets.


Asunto(s)
Luz , Espectrofotometría/métodos , Espectrofotometría Ultravioleta/métodos , Calibración , Concentración de Iones de Hidrógeno
9.
bioRxiv ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37609335

RESUMEN

Rotavirus is a leading cause of viral gastroenteritis. A hallmark of rotavirus infection is an increase in cytosolic Ca 2+ caused by the nonstructural protein 4 (NSP4). NSP4 is a viral ion channel that releases Ca 2+ from the endoplasmic reticulum (ER) and the increase in Ca 2+ signaling is critical for rotavirus replication. In addition to NSP4 itself, host inositol 1,4,5- trisphosphate receptor (IP 3 R) ER Ca 2+ channels may contribute to rotavirus-induced Ca 2+ signaling and by extension, virus replication. Thus, we set out to determine the role of IP 3 R Ca 2+ signaling during rotavirus infection using IP 3 R-knockout MA104-GCaMP6s cells (MA104- GCaMP6s-IP 3 R-KO), generated by CRISPR/Cas9 genome editing. Live Ca 2+ imaging showed that IP 3 R-KO did not reduce Ca 2+ signaling in infected cells but eliminated rotavirus-induced intercellular Ca 2+ waves (ICWs) and therefore the increased Ca 2+ signaling in surrounding, uninfected cells. Further, MA104-GCaMP6s-IP 3 R-TKO cells showed similar rotavirus susceptibility, single-cycle replication, and viral protein expression as parental MA104- GCaMP6s cells. However, MA104-GCaMP6s-IP 3 R-TKO cells exhibited significantly smaller rotavirus plaques, decreased multi-round replication kinetics, and delayed virus spread, suggesting that rotavirus-induced ICW Ca 2+ signaling stimulates virus replication and spread. Inhibition of ICWs by blocking the P2Y1 receptor also resulted in decreased rotavirus plaque size. Conversely, exogenous expression of P2Y1 in LLC-MK2-GCaMP6s cells, which natively lack P2Y1 and rotavirus ICWs, rescued the generation of rotavirus-induced ICWs and enabled plaque formation. In conclusion, this study shows that NSP4 Ca 2+ signals fully support rotavirus replication in individual cells; however, IP 3 R is critical for rotavirus-induced ICWs and virus spread by priming Ca 2+ -dependent pathways in surrounding cells. Importance: Many viruses exploit host Ca 2+ signaling to facilitate their replication; however, little is known about how distinct types of Ca 2+ signals contribute to the overall dysregulation of Ca 2+ signaling or promote virus replication. Using cells lacking IP 3 R, a host ER Ca 2+ channel, we could differentiate between intracellular Ca 2+ signals within virus-infected cells and intercellular Ca 2+ waves (ICWs), which increase Ca 2+ signaling in neighboring, uninfected cells. In infected cells, IP 3 R was dispensable for rotavirus-induced Ca 2+ signaling and replication, suggesting the rotavirus NSP4 viroporin supplies these signals. However, IP 3 R-mediated ICWs increase rotavirus replication kinetics and spread, indicating that the Ca 2+ signals from the ICWs may prime nearby uninfected cells to better support virus replication upon eventual infection. This "pre-emptive priming" of uninfected cells by exploiting host intercellular pathways in the vicinity of virus-infected cells represents a novel mechanism for viral reprogramming of the host to gain a replication advantage.

10.
PLoS One ; 18(1): e0280428, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662766

RESUMEN

Carcinoma of the endometrium of the uterus is the most common female pelvic malignancy. Although uterine corpus endometrial cancer (UCEC) has a favorable prognosis if removed early, patients with advanced tumor stages have a low survival rate. These facts highlight the importance of understanding UCEC biology. Computational analysis of RNA-sequencing data from UCEC patients revealed that the molecular motor Myosin Vb (MYO5B) was elevated in the beginning stages of UCEC and occurred in all patients regardless of tumor stage, tumor type, age, menopause status or ethnicity. Although several mutations were identified in the MYO5B gene in UCEC patients, these mutations did not correlate with mRNA expression. Examination of MYO5B methylation revealed that UCEC patients had undermethylated MYO5B and undermethylation was positively correlated with increased mRNA and protein levels. Immunostaining confirmed elevated levels of apical MYO5B in UCEC patients compared to adjacent tissue. UCEC patients with high expressing MYO5B tumors had far worse prognosis than UCEC patients with low expressing MYO5B tumors, as reflected by survival curves. Metabolic pathway analysis revealed significant alterations in metabolism pathways in UCE patients and key metabolism genes were positively correlated with MYO5B mRNA. These data provide the first evidence that MYO5B may participate in UCEC tumor development.


Asunto(s)
Carcinoma Endometrioide , Neoplasias Endometriales , Humanos , Femenino , Neoplasias Endometriales/patología , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biología Computacional , Miosinas
11.
Am J Physiol Gastrointest Liver Physiol ; 324(1): G51-G59, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36414538

RESUMEN

Viruses are among the most prevalent enteric pathogens. Although virologists historically relied on cell lines and animal models, human intestinal organoids (HIOs) continue to grow in popularity. HIOs are nontransformed, stem cell-derived, ex vivo cell cultures that maintain the cell type diversity of the intestinal epithelium. They offer higher throughput than standard animal models while more accurately mimicking the native tissue of infection than transformed cell lines. Here, we review recent literature that highlights virological advances facilitated by HIOs. We discuss the variations and limitations of HIOs, how HIOs have allowed for the cultivation of previously uncultivatable viruses, and how they have offered insight into tropism, entry, replication kinetics, and host-pathogen interactions. In each case, we discuss exemplary viruses and archetypal studies. We discuss how the speed and flexibility of HIO-based studies contributed to our knowledge of SARS-CoV-2 and antiviral therapeutics. Finally, we discuss the current limitations of HIOs and future directions to overcome these.


Asunto(s)
COVID-19 , Animales , Humanos , Diferenciación Celular , SARS-CoV-2 , Intestinos , Mucosa Intestinal/metabolismo , Organoides/metabolismo
12.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G501-G510, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36218265

RESUMEN

Intestinal enterocytes have an elaborate apical membrane of actin-rich protrusions known as microvilli. The organization of microvilli is orchestrated by the intermicrovillar adhesion complex (IMAC), which connects the distal tips of adjacent microvilli. The IMAC is composed of CDHR2 and CDHR5 as well as the scaffolding proteins USH1C, ANKS4B, and Myosin 7b (MYO7B). To create an IMAC, cells must transport the proteins to the apical membrane. Myosin 5b (MYO5B) is a molecular motor that traffics ion transporters to the apical membrane of enterocytes, and we hypothesized that MYO5B may also be responsible for the localization of IMAC proteins. To address this question, we used two different mouse models: 1) neonatal germline MYO5B knockout (MYO5B KO) mice and 2) adult intestinal-specific tamoxifen-inducible VillinCreERT2;MYO5Bflox/flox mice. In control mice, immunostaining revealed that CDHR2, CDHR5, USH1C, and MYO7B were highly enriched at the tips of the microvilli. In contrast, neonatal germline and adult MYO5B-deficient mice showed loss of apical CDHR2, CDHR5, and MYO7B in the brush border and accumulation in a subapical compartment. Colocalization analysis revealed decreased Mander's coefficients in adult inducible MYO5B-deficient mice compared with control mice for CDHR2, CDHR5, USH1C, and MYO7B. Scanning electron microscopy images further demonstrated aberrant microvilli packing in adult inducible MYO5B-deficient mouse small intestine. These data indicate that MYO5B is responsible for the delivery of IMAC components to the apical membrane.NEW & NOTEWORTHY The intestinal epithelium absorbs nutrients and water through an elaborate apical membrane of highly organized microvilli. Microvilli organization is regulated by the intermicrovillar adhesion complexes, which create links between neighboring microvilli and control microvilli packing and density. In this study, we report a new trafficking partner of the IMAC, Myosin 5b. Loss of Myosin 5b results in a disorganized brush border and failure of IMAC proteins to reach the distal tips of microvilli.


Asunto(s)
Enterocitos , Microvellosidades , Miosina Tipo V , Animales , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Enterocitos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Microvellosidades/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo
13.
iScience ; 25(5): 104158, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494230

RESUMEN

Gut microbes can synthesize multiple neuro-active metabolites. We profiled neuro-active compounds produced by the gut commensal Bacteroides ovatus in vitro and in vivo by LC-MS/MS. We found that B. ovatus generates acetic acid, propionic acid, isobutyric acid, and isovaleric acid. In vitro, B. ovatus consumed tryptophan and glutamate and synthesized the neuro-active compounds glutamine and GABA. Consistent with our LC-MS/MS-based in vitro data, we observed elevated levels of acetic acid, propionic acid, isobutyric acid, and isovaleric acid in the intestines of B. ovatus mono-associated mice compared with germ-free controls. B. ovatus mono-association also increased the concentrations of intestinal GABA and decreased the concentrations of tryptophan and glutamine compared with germ-free controls. Computational network analysis revealed unique links between SCFAs, neuro-active compounds, and colonization status. These results highlight connections between microbial colonization and intestinal neurotransmitter concentrations, suggesting that B. ovatus selectively influences the presence of intestinal neurotransmitters.

14.
Biomolecules ; 11(8)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34439760

RESUMEN

BACKGROUND: Accumulating evidence indicates that the gut microbiota can synthesize neurotransmitters as well as impact host-derived neurotransmitter levels. In the past, it has been challenging to decipher which microbes influence neurotransmitters due to the complexity of the gut microbiota. METHODS: To address whether a single microbe, Bifidobacterium dentium, could regulate important neurotransmitters, we examined Bifidobacteria genomes and explored neurotransmitter pathways in secreted cell-free supernatant using LC-MS/MS. To determine if B. dentium could impact neurotransmitters in vivo, we mono-associated germ-free mice with B. dentium ATCC 27678 and examined fecal and brain neurotransmitter concentrations. RESULTS: We found that B. dentium possessed the enzymatic machinery to generate γ-aminobutyric acid (GABA) from glutamate, glutamine, and succinate. Consistent with the genome analysis, we found that B. dentium secreted GABA in a fully defined microbial media and elevated fecal GABA in B. dentium mono-associated mice compared to germ-free controls. We also examined the tyrosine/dopamine pathway and found that B. dentium could synthesize tyrosine, but could not generate L-dopa, dopamine, norepinephrine, or epinephrine. In vivo, we found that B. dentium mono-associated mice had elevated levels of tyrosine in the feces and brain. CONCLUSIONS: These data indicate that B. dentium can contribute to in vivo neurotransmitter regulation.


Asunto(s)
Bifidobacterium/metabolismo , Neurotransmisores/metabolismo , Animales , Infecciones por Bifidobacteriales/metabolismo , Encéfalo/metabolismo , Calibración , Cromatografía Liquida , Microbioma Gastrointestinal , Genoma , Intestinos/patología , Masculino , Ratones , Microbiota , Espectrometría de Masas en Tándem , Tirosina/metabolismo
15.
Gut Microbes ; 13(1): 1-21, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33985416

RESUMEN

Endoplasmic reticulum (ER) stress compromises the secretion of MUC2 from goblet cells and has been linked with inflammatory bowel disease (IBD). Although Bifidobacterium can beneficially modulate mucin production, little work has been done investigating the effects of Bifidobacterium on goblet cell ER stress. We hypothesized that secreted factors from Bifidobacterium dentium downregulate ER stress genes and modulates the unfolded protein response (UPR) to promote MUC2 secretion. We identified by mass spectrometry that B. dentium secretes the antioxidant γ-glutamylcysteine, which we speculate dampens ER stress-mediated ROS and minimizes ER stress phenotypes. B. dentium cell-free supernatant and γ-glutamylcysteine were taken up by human colonic T84 cells, increased glutathione levels, and reduced ROS generated by the ER-stressors thapsigargin and tunicamycin. Moreover, B. dentium supernatant and γ-glutamylcysteine were able to suppress NF-kB activation and IL-8 secretion. We found that B. dentium supernatant, γ-glutamylcysteine, and the positive control IL-10 attenuated the induction of UPR genes GRP78, CHOP, and sXBP1. To examine ER stress in vivo, we first examined mono-association of B. dentium in germ-free mice which increased MUC2 and IL-10 levels compared to germ-free controls. However, no changes were observed in ER stress-related genes, indicating that B. dentium can promote mucus secretion without inducing ER stress. In a TNBS-mediated ER stress model, we observed increased levels of UPR genes and pro-inflammatory cytokines in TNBS treated mice, which were reduced with addition of live B. dentium or γ-glutamylcysteine. We also observed increased colonic and serum levels of IL-10 in B. dentium- and γ-glutamylcysteine-treated mice compared to vehicle control. Immunostaining revealed retention of goblet cells and mucus secretion in both B. dentium- and γ-glutamylcysteine-treated animals. Collectively, these data demonstrate positive modulation of the UPR and MUC2 production by B. dentium-secreted compounds.


Asunto(s)
Bifidobacterium/metabolismo , Colitis/microbiología , Colitis/fisiopatología , Colon/inmunología , Dipéptidos/metabolismo , Estrés del Retículo Endoplásmico , Células Caliciformes/inmunología , Animales , Colitis/inducido químicamente , Colitis/inmunología , Colon/microbiología , Colon/fisiopatología , Chaperón BiP del Retículo Endoplásmico , Microbioma Gastrointestinal , Humanos , Masculino , Ratones , Mucina 2/genética , Mucina 2/inmunología , Ácido Trinitrobencenosulfónico/efectos adversos
16.
BMC Microbiol ; 21(1): 154, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030655

RESUMEN

BACKGROUND: Bifidobacteria are commensal microbes of the mammalian gastrointestinal tract. In this study, we aimed to identify the intestinal colonization mechanisms and key metabolic pathways implemented by Bifidobacterium dentium. RESULTS: B. dentium displayed acid resistance, with high viability over a pH range from 4 to 7; findings that correlated to the expression of Na+/H+ antiporters within the B. dentium genome. B. dentium was found to adhere to human MUC2+ mucus and harbor mucin-binding proteins. Using microbial phenotyping microarrays and fully-defined media, we demonstrated that in the absence of glucose, B. dentium could metabolize a variety of nutrient sources. Many of these nutrient sources were plant-based, suggesting that B. dentium can consume dietary substances. In contrast to other bifidobacteria, B. dentium was largely unable to grow on compounds found in human mucus; a finding that was supported by its glycosyl hydrolase (GH) profile. Of the proteins identified in B. dentium by proteomic analysis, a large cohort of proteins were associated with diverse metabolic pathways, indicating metabolic plasticity which supports colonization of the dynamic gastrointestinal environment. CONCLUSIONS: Taken together, we conclude that B. dentium is well adapted for commensalism in the gastrointestinal tract.


Asunto(s)
Bifidobacterium/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Ácidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bifidobacterium/genética , Bifidobacterium/crecimiento & desarrollo , Tracto Gastrointestinal/fisiología , Genoma Bacteriano , Glucosa/metabolismo , Humanos , Simbiosis
17.
mBio ; 12(2)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653893

RESUMEN

Multiple studies have implicated microbes in the development of inflammation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium have been identified in the intestinal mucosa of patients with digestive diseases; thus, we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The addition of >50 kDa F. nucleatum conditioned media, which contain outer membrane vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F. nucleatum OMVs, but not compounds <50 kDa, stimulated IL-8 and TNF production; which was decreased by pharmacological inhibition of Toll-like receptor 4 (TLR4). These effects were linked to downstream effectors p-ERK, p-CREB, and NF-κB. F. nucleatum >50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB activation in human colonoid monolayers. In mice harboring a human microbiota, pretreatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflammation. Compared to mice receiving vehicle control, mice treated with F. nucleatum showed disruption of the colonic architecture, with increased immune cell infiltration and depleted mucus layers. Analysis of mucosal gene expression revealed increased levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-γ, and MCP-1) at day 3 and day 5 in F. nucleatum-treated mice compared to controls. These proinflammatory effects were absent in mice who received F. nucleatum without pretreatment with antibiotics, suggesting that an intact microbiome is protective against F. nucleatum-mediated immune responses. These data provide evidence that F. nucleatum promotes proinflammatory signaling cascades in the context of a depleted intestinal microbiome.IMPORTANCE Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp. polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stimulate proinflammatory signals in vitro Using mice harboring a human microbiome, we demonstrate that F. nucleatum can promote inflammation, an effect which required antibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a mechanism by which F. nucleatum may contribute to intestinal inflammation.


Asunto(s)
Membrana Externa Bacteriana/inmunología , Vesículas Extracelulares/inmunología , Fusobacterium nucleatum/inmunología , Fusobacterium nucleatum/metabolismo , Inflamación/microbiología , Animales , Células Cultivadas , Colon/citología , Medios de Cultivo/farmacología , Citocinas/análisis , Citocinas/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Femenino , Fusobacterium nucleatum/patogenicidad , Microbioma Gastrointestinal , Células HT29 , Humanos , Inflamación/inmunología , Intestinos/inmunología , Intestinos/microbiología , Intestinos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/inmunología , Transducción de Señal , Receptor Toll-Like 4/inmunología
18.
Physiol Rep ; 9(2): e14719, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33463911

RESUMEN

BACKGROUND: Lactic acid bacteria are commensal members of the gut microbiota and are postulated to promote host health. Secreted factors and cell surface components from Lactobacillus species have been shown to modulate the host immune system. However, the precise role of L. reuteri secreted factors and surface proteins in influencing dendritic cells (DCs) remains uncharacterized. HYPOTHESIS: We hypothesize that L. reuteri secreted factors will promote DC maturation, skewing cells toward an anti-inflammatory phenotype. In acute colitis, we speculate that L. reuteri promotes IL-10 and dampens pro-inflammatory cytokine production, thereby improving colitis. METHODS & RESULTS: Mouse bone marrow-derived DCs were differentiated into immature dendritic cells (iDCs) via IL-4 and GM-CSF stimulation. iDCs exposed to L. reuteri secreted factors or UV-irradiated bacteria exhibited greater expression of DC maturation markers CD83 and CD86 by flow cytometry. Additionally, L. reuteri stimulated DCs exhibited phenotypic maturation as denoted by cytokine production, including anti-inflammatory IL-10. Using mouse colonic organoids, we found that the microinjection of L. reuteri secreted metabolites and UV-irradiated bacteria was able to promote IL-10 production by DCs, indicating potential epithelial-immune cross-talk. In a TNBS-model of acute colitis, L. reuteri administration significantly improved histological scoring, colonic cytokine mRNA, serum cytokines, and bolstered IL-10 production. CONCLUSIONS: Overall these data demonstrate that both L. reuteri secreted factors and its bacterial components are able to promote DC maturation. This work points to the specific role of L. reuteri in modulating intestinal DCs. NEW & NOTEWORTHY: Lactobacillus reuteri colonizes the mammalian gastrointestinal tract and exerts beneficial effects on host health. However, the mechanisms behind these effects have not been fully explored. In this article, we identified that L. reuteri ATTC PTA 6475 metabolites and surface components promote dendritic cell maturation and IL-10 production. In acute colitis, we also demonstrate that L. reuteri can promote IL-10 and suppress inflammation. These findings may represent a crucial mechanism for maintaining intestinal immune homeostasis.


Asunto(s)
Colitis/inmunología , Células Dendríticas/inmunología , Limosilactobacillus reuteri/inmunología , Probióticos/administración & dosificación , Animales , Colitis/metabolismo , Colitis/microbiología , Colitis/patología , Citocinas/sangre , Citocinas/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/microbiología , Femenino , Microbioma Gastrointestinal , Inmunomodulación , Masculino , Ratones , Ratones Endogámicos BALB C
19.
Am J Pathol ; 191(4): 704-719, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33516788

RESUMEN

The intestinal microbiota influences the development and function of the mucosal immune system. However, the exact mechanisms by which commensal microbes modulate immunity is not clear. We previously demonstrated that commensal Bacteroides ovatus ATCC 8384 reduces mucosal inflammation. Herein, we aimed to identify immunomodulatory pathways employed by B. ovatus. In germ-free mice, mono-association with B. ovatus shifted the CD11b+/CD11c+ and CD103+/CD11c+ dendritic cell populations. Because indole compounds are known to modulate dendritic cells, B. ovatus cell-free supernatant was screened for tryptophan metabolites by liquid chromatography-tandem mass spectrometry and larger quantities of indole-3-acetic acid were detected. Analysis of cecal and fecal samples from germ-free and B. ovatus mono-associated mice confirmed that B. ovatus could elevate indole-3-acetic acid concentrations in vivo. Indole metabolites have previously been shown to stimulate immune cells to secrete the reparative cytokine IL-22. Addition of B. ovatus cell-free supernatant to immature bone marrow-derived dendritic cells stimulated IL-22 secretion. The ability of IL-22 to drive repair in the intestinal epithelium was confirmed using a physiologically relevant human intestinal enteroid model. Finally, B. ovatus shifted the immune cell populations in trinitrobenzene sulfonic acid-treated mice and up-regulated colonic IL-22 expression, effects that correlated with decreased inflammation. Our data suggest that B. ovatus-produced indole-3-acetic acid promotes IL-22 production by immune cells, yielding beneficial effects on colitis.


Asunto(s)
Bacteroides/efectos de los fármacos , Colon/metabolismo , Inflamación/tratamiento farmacológico , Interleucinas/metabolismo , Ácido Trinitrobencenosulfónico/farmacología , Animales , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/efectos de los fármacos , Citocinas/metabolismo , Sulfato de Dextran/metabolismo , Humanos , Inflamación/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Ratones , Interleucina-22
20.
ACS Infect Dis ; 7(5): 1126-1142, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33176423

RESUMEN

It is widely accepted that the pathogen Clostridioides difficile exploits an intestinal environment with an altered microbiota, but the details of these microbe-microbe interactions are unclear. Adherence and colonization of mucus has been demonstrated for several enteric pathogens and it is possible that mucin-associated microbes may be working in concert with C. difficile. We showed that C. difficile ribotype-027 adheres to MUC2 glycans and using fecal bioreactors, we identified that C. difficile associates with several mucin-degrading microbes. C. difficile was found to chemotax toward intestinal mucus and its glycan components, demonstrating that C. difficile senses the mucus layer. Although C. difficile lacks the glycosyl hydrolases required to degrade mucin glycans, coculturing C. difficile with the mucin-degrading Akkermansia muciniphila, Bacteroides thetaiotaomicron, and Ruminococcus torques allowed C. difficile to grow in media that lacked glucose but contained purified MUC2. Collectively, these studies expand our knowledge on how intestinal microbes support C. difficile.


Asunto(s)
Clostridioides difficile , Clostridioides , Clostridiales , Humanos , Monosacáridos , Mucinas , Moco
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...