Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
SLAS Discov ; 27(4): 219-228, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35058188

RESUMEN

Huntington's disease (HD) is the most common monogenic neurodegenerative disease and is fatal. CAG repeat expansions in mutant Huntingtin (mHTT) exon 1 encode for polyglutamine (polyQ) stretches and influence age of onset and disease severity, depending on their length. mHTT is more structured compared to wild-type (wt) HTT, resulting in a decreased N-terminal conformational flexibility. mHTT inflexibility may contribute to both gain of function toxicity, due to increased mHTT aggregation propensity, but also to loss of function phenotypes, due to decreased interactions with binding partners. High-throughput-screening techniques to identify mHTT flexibility states and potential flexibility modifying small molecules are currently lacking. Here, we propose a novel approach for identifying small molecules that restore mHTT's conformational flexibility in human patient fibroblasts. We have applied a well-established antibody-based time-resolved Förster resonance energy transfer (TR-FRET) immunoassay, which measures endogenous HTT flexibility using two validated HTT-specific antibodies, to a high-throughput screening platform. By performing a small-scale compound screen, we identified several small molecules that can partially rescue mHTT inflexibility, presumably by altering HTT post-translational modifications. Thus, we demonstrated that the HTT TR-FRET immunoassay can be miniaturized and applied to a compound screening workflow in patient cells. This automated assay can now be used in large screening campaigns to identify previously unknown HD drugs and drug targets.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Transferencia Resonante de Energía de Fluorescencia , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
2.
SLAS Discov ; 26(7): 922-932, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33896272

RESUMEN

Oncogenic forms of KRAS proteins are known to be drivers of pancreatic, colorectal, and lung cancers. The goal of this study is to identify chemical leads that inhibit oncogenic KRAS signaling. We first developed an isogenic panel of mouse embryonic fibroblast (MEF) cell lines that carry wild-type RAS, oncogenic KRAS, and oncogenic BRAF. We validated these cell lines by screening against a tool compound library of 1402 annotated inhibitors in an adenosine triphosphate (ATP)-based cell viability assay. Subsequently, this MEF panel was used to conduct a high-throughput phenotypic screen in a cell viability assay with a proprietary compound library. All 126 compounds that exhibited a selective activity against mutant KRAS were selected and prioritized based on their activities in secondary assays. Finally, five chemical clusters were chosen. They had specific activity against SW620 and LS513 over Colo320 colorectal cancer cell lines. In addition, they had no effects on BRAFV600E, MEK1, extracellular signal-regulated kinase 2 (ERK2), phosphoinositide 3-kinase alpha (PI3Kα), AKT1, or mammalian target of rapamycin (mTOR) as tested in in vitro enzymatic activity assays. Biophysical assays demonstrated that these compounds did not bind directly to KRAS. We further identified the mechanism of action and showed that three of them have CDK9 inhibitory activity. In conclusion, we have developed and validated an isogenic MEF panel that was used successfully to identify RAS oncogenic or wild-type allele-specific vulnerabilities. Furthermore, we identified sensitivity of oncogenic KRAS-expressing cells to CDK9 inhibitors, which warrants future studies of treating KRAS-driven cancers with CDK9 inhibitors.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento , Ratones , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
3.
J Biol Chem ; 290(2): 762-74, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25391653

RESUMEN

Cancer-associated point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) confer a neomorphic enzymatic activity: the reduction of α-ketoglutarate to d-2-hydroxyglutaric acid, which is proposed to act as an oncogenic metabolite by inducing hypermethylation of histones and DNA. Although selective inhibitors of mutant IDH1 and IDH2 have been identified and are currently under investigation as potential cancer therapeutics, the mechanistic basis for their selectivity is not yet well understood. A high throughput screen for selective inhibitors of IDH1 bearing the oncogenic mutation R132H identified compound 1, a bis-imidazole phenol that inhibits d-2-hydroxyglutaric acid production in cells. We investigated the mode of inhibition of compound 1 and a previously published IDH1 mutant inhibitor with a different chemical scaffold. Steady-state kinetics and biophysical studies show that both of these compounds selectively inhibit mutant IDH1 by binding to an allosteric site and that inhibition is competitive with respect to Mg(2+). A crystal structure of compound 1 complexed with R132H IDH1 indicates that the inhibitor binds at the dimer interface and makes direct contact with a residue involved in binding of the catalytically essential divalent cation. These results show that targeting a divalent cation binding residue can enable selective inhibition of mutant IDH1 and suggest that differences in magnesium binding between wild-type and mutant enzymes may contribute to the inhibitors' selectivity for the mutant enzyme.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Isocitrato Deshidrogenasa/química , Neoplasias/tratamiento farmacológico , Sitio Alostérico , Cristalografía por Rayos X , Metilación de ADN/genética , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/uso terapéutico , Escherichia coli , Regulación Neoplásica de la Expresión Génica , Humanos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/biosíntesis , Isocitrato Deshidrogenasa/genética , Magnesio/química , Proteínas Mutantes/química , Proteínas Mutantes/genética , Neoplasias/genética , Neoplasias/patología , Conformación Proteica
4.
Am J Physiol Cell Physiol ; 284(3): C658-66, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12444016

RESUMEN

The signal transduction pathways connecting cell surface receptors to the activation of muscle-specific promoters and leading to myogenesis are still largely unknown. Recently, a contribution of the p38 mitogen-activated protein kinase (MAPK) pathway to this process was evoked through the use of pharmacological inhibitors. We used several mutants of the kinases composing this pathway to modulate the activity of the muscle-specific myosin light chain and myogenin promoters in C2C12 cells by transient transfections. In addition, we show for the first time, using a stable C2C12 cell line expressing a dominant-negative form of the p38 activator MAPK kinase (MKK)3, that a functional p38 MAPK pathway is indeed required for terminal muscle cell differentiation. The most obvious phenotype of this cell line, besides the inhibition of the activation of p38, is its inability to undergo terminal differentiation. This phenotype is accompanied by a drastic inhibition of cell cycle and myogenesis markers such as p21, p27, MyoD, and troponin T, as well as a profound disorganization of the cytoskeleton.


Asunto(s)
Diferenciación Celular/genética , Quinasa 1 de Quinasa de Quinasa MAP , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fibras Musculares Esqueléticas/enzimología , Músculo Esquelético/embriología , Músculo Esquelético/enzimología , Mioblastos Esqueléticos/enzimología , Proteínas Tirosina Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , MAP Quinasa Quinasa 3 , Ratones , Proteína Quinasa 14 Activada por Mitógenos , Quinasas de Proteína Quinasa Activadas por Mitógenos/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Proteína MioD/antagonistas & inhibidores , Proteína MioD/metabolismo , Mioblastos Esqueléticos/citología , Miogenina/antagonistas & inhibidores , Miogenina/metabolismo , Cadenas Pesadas de Miosina/efectos de los fármacos , Cadenas Pesadas de Miosina/metabolismo , Cadenas Ligeras de Miosina/antagonistas & inhibidores , Cadenas Ligeras de Miosina/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/efectos de los fármacos , Proteínas Tirosina Quinasas/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...