Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(47): 45065-45077, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38046341

RESUMEN

The nucleation process leading to the formation of new atmospheric particles plays a crucial role in aerosol research. Quantum chemical (QC) calculations can be used to model the early stages of aerosol formation, where atmospheric vapor molecules interact and form stable molecular clusters. However, QC calculations heavily depend on the chosen computational method, and when dealing with large systems, striking a balance between accuracy and computational cost becomes essential. We benchmarked the binding energies and structures and found the B97-3c method to be a good compromise between the accuracy and computational cost for studying large cluster systems. Further, we carefully assessed configurational sampling procedures for targeting large atmospheric molecular clusters containing up to 30 molecules (approximately 2 nm in diameter) and proposed a funneling approach with highly improved accuracy. We find that several parallel ABCluster explorations lead to better guesses for the cluster global energy minimum structures than one long exploration. This methodology allows us to bridge computational studies of molecular clusters, which typically reach only around 1 nm, with experimental studies that often measure particles larger than 2 nm. By employing this workflow, we searched for low-energy configurations of large sulfuric acid-ammonia and sulfuric acid-dimethylamine clusters. We find that the binding free energies of clusters containing dimethylamine are unequivocally more stable than those of the ammonia-containing clusters. Our improved configurational sampling protocol can in the future be applied to study the growth and dynamics of large clusters of arbitrary compositions.

2.
ACS Omega ; 8(38): 34597-34609, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37779982

RESUMEN

Studying large atmospheric molecular clusters is needed to understand the transition between clusters and aerosol particles. In this work, we studied the (SA)n(AM)n clusters with n up to 30 and the (SA)m(AM)m±2 clusters, with m = 6-20. The cluster configurations are sampled using the ABCluster program, and the cluster geometries and thermochemical parameters are calculated using GFN1-xTB. The cluster binding energies are calculated using B97-3c. We find that the addition of sulfuric acid is preferred to the addition of ammonia. The addition free energies were found to have large uncertainties, which could potentially be attributed to errors in the applied level of theory. Based on DLPNO-CCSD(T0)/aug-cc-pVTZ benchmarks of the binding energies of the large (SA)8-9(AM)10 and (SA)10(AM)10-11 clusters, we find that ωB97X-D3BJ with a large basis set is required to yield accurate binding and addition energies. However, based on recalculations of the single-point energy at r2SCAN-3c and ωB97X-D3BJ/6-311++G(3df,3pd), we show that the single-point energy contribution is not the primary source of error. We hypothesize that a larger source of error might be present in the form of insufficient configurational sampling. Finally, we train Δ machine learning model on (SA)n(AM)n clusters with n up to 5 and show that we can predict the binding energies of clusters up to sizes of (SA)30(AM)30 with a binding energy error below 0.6 %. This is an encouraging approach for accurately modeling the binding energies of large acid-base clusters in the future.

3.
Environ Sci Technol ; 57(17): 6944-6954, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37083433

RESUMEN

Iodic acid (IA) has recently been recognized as a key driver for new particle formation (NPF) in marine atmospheres. However, the knowledge of which atmospheric vapors can enhance IA-induced NPF remains limited. The unique halogen bond (XB)-forming capacity of IA makes it difficult to evaluate the enhancing potential (EP) of target compounds on IA-induced NPF based on widely studied sulfuric acid systems. Herein, we employed a three-step procedure to evaluate the EP of potential atmospheric nucleation precursors on IA-induced NPF. First, we evaluated the EP of 63 precursors by simulating the formation free energies (ΔG) of the IA-containing dimer clusters. Among all dimer clusters, 44 contained XBs, demonstrating that XBs are frequently formed. Based on the calculated ΔG values, a quantitative structure-activity relationship model was developed for evaluating the EP of other precursors. Second, amines and O/S-atom-containing acids were found to have high EP, with diethylamine (DEA) yielding the highest potential to enhance IA-induced nucleation by combining both the calculated ΔG and atmospheric concentration of considered 63 precursors. Finally, by studying larger (IA)1-3(DEA)1-3 clusters, we found that the IA-DEA system with merely 0.1 ppt (2.5×106 cm-3) DEA yields comparable nucleation rates to that of the IA-iodous acid system.


Asunto(s)
Atmósfera , Yodatos , Atmósfera/química , Aminas , Gases
4.
Nat Comput Sci ; 3(6): 495-503, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38177415

RESUMEN

The formation of strongly bound atmospheric molecular clusters is the first step towards forming new aerosol particles. Recent advances in the application of machine learning models open an enormous opportunity for complementing expensive quantum chemical calculations with efficient machine learning predictions. In this Perspective, we present how data-driven approaches can be applied to accelerate cluster configurational sampling, thereby greatly increasing the number of chemically relevant systems that can be covered.

5.
ACS Omega ; 7(9): 8077-8083, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35284723

RESUMEN

Sulfuric acid and ammonia are believed to account for a large fraction of new-particle formation in the atmosphere. However, it remains unclear how small clusters grow to larger sizes, eventually ending up as stable aerosol particles. Here we present the largest sulfuric acid-ammonia clusters studied to date using quantum chemical methods by calculating the binding free energies of (SA) n (A) n clusters, with n up to 20. Based on benchmark calculations, we apply the B97-3c//GFN1-xTB level of theory to calculate the cluster structures and thermochemical parameters. We find that the cluster structures drastically evolve at larger sizes. We identify that an ammonium ion is fully coordinated in the core of the cluster at n = 7, and at n = 13 we see the emergence of the first fully coordinated bisulfate ion. We identify multiple ammonium and bisulfate ions that are embedded in the core of the cluster structure at n = 19. The binding free energy per acid-base pair levels out around n = 8-10, indicating that at a certain point the thermochemistry of the clusters converges toward a constant value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...