Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38460877

RESUMEN

In commercial dairy production systems, feeding calves once a day could be an alternative to reduce labor expenses. Several studies comparing once (OAD) versus twice (TAD) a day milk feeding systems have not evidenced differences in calf growth, rumen development, blood parameters or health scores, but impact on ruminal microbiota remains to be investigated. The objective of this study was to determine the effects of OAD or TAD on the establishment of the ruminal microbiota and its metabolic activity. Sixteen male calves (45.9 ± 5.7 kg at birth) were involved in the trial from birth to weaning (63 d). After the colostrum phase, 2 feeding programs based on a milk replacer were tested and calves were allocated to these programs on d 5. To study the establishment of the bacterial community, ruminal fluid was obtained from each calf one hour after the morning meal at 7 (d 7), 35 (d 35) and 63 (d 63) days of age. The ruminal metabolome was evaluated at a 7 d interval from d 1 to d 63. Ruminal microbiota and metabolite profiles were characterized by 16 S rRNA gene sequencing- and by H-NMR spectroscopy, respectively. Our results showed that feeding milk replacer once or twice a day did not change the ruminal microbiota and metabolites of dairy calves from birth to weaning. Microbial data showed that diversity and richness increased with age, suggesting a shift from an heterogeneous and less diverse community after birth (d 7) to a more diverse but homogeneous community at 35 and 63 d. These findings suggest that feeding milk once a day can be successfully applied to a calf feeding system without compromising microbial establishment and functions.

2.
Animal ; 16(12): 100674, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36434984

RESUMEN

Compared with maize silage- and concentrate-based diets, herbage-based diets were repeatedly shown to favourably influence the milk fatty acid (FA) profile. However, it is unclear how the herbage feeding mode (grazing vs indoor green-feeding) and conservation (fresh herbage vs hay vs silage) modify the milk FA profile. Therefore, the aim of the present experiment was to investigate the effect of different herbage utilisation methods (including herbage feeding mode and herbage conservation method) on the ruminal biohydrogenation of dietary FA and the consequences on the milk FA composition in cows of two breeds (Holstein and Montbéliarde). Concomitant effects of botanical composition and phenological stage of the herbage on milk FA profile were controlled for by harvesting barn-dried hay and silage simultaneously as first cut from the same ryegrass-dominated grassland in a semi-mountainous region. Seven weeks later, the first regrowth of the same plot was used as fresh herbage, either grazed or fed indoor (indoor green-feeding). Twenty-four Montbéliarde and 24 Holstein cows were randomly allocated to four groups of 12 cows balanced by breed, parity, and milk yield. In a free-stall barn, three groups were given ad libitum access to hay, silage, or fresh herbage, respectively. The fourth group was strip-grazing. All cows were supplemented with 3 kg DM/day of the same energy-rich concentrate. After 2 weeks of adaptation to the forage, samples of forage, concentrate, milk, blood, and rumen fluid were collected. Fatty acid composition of forages, rumen fluid, and milk was analysed by gas chromatography. Haymaking reduced total FA content of the herbage, in particular that of linoleic acid (LA) and α-linolenic acid (ALA). Still, rumen fluid lipids of hay-fed cows had the highest proportion of rumenic acid, LA, ALA, and total polyunsaturated fatty acids (PUFAs). Milk fat from hay-fed cows had the highest proportion of LA, and the apparent transfer rates from feed to milk of LA and ALA were higher in hay-fed cows than in silage-fed cows. The proportion of PUFAs was highest in milk fat from grazing and indoor green-fed Montbéliarde cows and lowest in silage-fed cows of both breeds. In conclusion, the herbage utilisation method affects the ruminal biohydrogenation of LA and ALA, whereby herbage drying particularly increases their transfer from herbage to milk.


Asunto(s)
Ácidos Grasos , Leche , Femenino , Animales , Bovinos , Ácidos Grasos/análisis , Leche/química , Rumen/química , Lactancia , Fitomejoramiento , Dieta/veterinaria , Ácido Linoleico/farmacología , Ensilaje/análisis , Ácidos Grasos Insaturados/análisis
3.
J Dairy Sci ; 103(1): 396-409, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31733854

RESUMEN

The aim of this study was to determine the effects of pretreatment with reducing sugars or with an enzymatic cocktail before extrusion of fava bean on intake, milk yield and composition, N partitioning, and plasma and ruminal parameters. The main hypothesis was that these pretreatment conditions would allow better N protection in the rumen compared with classic pretreatment before extrusion, thanks to an increase of sugar proportion, either exogenous or endogenous with enzymatic actions. Sixteen Holstein cows were used in a 4 × 4 Latin square design experiment. Cow were fed a diet with a 56:44 forage to concentrate ratio and containing 16.2% of crude protein (CP; dry matter basis). Concentrate consisted of fava bean:linseed blends (90:10%, raw basis) distributed either raw, extruded after pretreatment without additive, extruded after pretreatment with reducing sugars, or extruded after pretreatment with an enzymatic cocktail. The experimental blends provided 53% of total CP in the diet. Intake, milk yield and composition, ruminal pH, volatile fatty acids and ammonia kinetics, apparent total-tract nutrient digestibilities and N partitioning, Maillard compounds in feed and feces, plasma AA, and 15N natural enrichment were measured. Data were analyzed using analysis of variance according to the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Extrusion without additive during pretreatment led to higher contents of Maillard compounds in the blend, a lower enzymatic CP degradability, a numerically lower ammonia content in ruminal fluid, and a trend of higher plasma EAA concentration, all suggesting a decrease in degradability of proteins in the rumen, and a subsequent increase in metabolizable protein supply. Compared with pretreatment without additive, adding reducing sugars or an enzymatic cocktail during pretreatment led to an increase in Maillard compound contents in the extruded blends, and to an increase (+50 mg/L) in rumen ammonia content. With reducing sugars, digestibility of Nɛ-carboxymethyl-lysine was numerically lower, and plasma EAA concentration tended to decrease, suggesting an overprotection of proteins in the intestine. With the enzymatic cocktail, plasma EAA concentration was similar than without additive during pretreatment, suggesting a similar metabolizable protein supply with both treatments. Finally, no change in N partitioning between milk, urine, and feces was observed whatever the diet.


Asunto(s)
Alimentación Animal/análisis , Bovinos/fisiología , Dieta/veterinaria , Manipulación de Alimentos/métodos , Nitrógeno/metabolismo , Vicia faba , Amoníaco/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Enzimas , Ácidos Grasos Volátiles/análisis , Heces/química , Femenino , Lactancia/efectos de los fármacos , Leche/química , Rumen/metabolismo , Azúcares
4.
J Dairy Sci ; 102(6): 5130-5147, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30981491

RESUMEN

The objective was to test the effects of replacing soybean meal in dairy cow diets with either raw or extruded faba bean:linseed or lupin:linseed blends on intake, milk yield and composition, N partitioning, and ruminal and plasma parameters. Our main hypotheses were that N from extruded blends was less degradable in the rumen than N from raw seeds, and that a higher extrusion temperature favored ruminal protection of proteins and milk protein yield, and lowered urinary N excretion. Eight Holstein cows fitted with ruminal cannulas were used in two 4 × 4 Latin square design experiments conducted in parallel. In both experiments, cows were fed diets with a crude protein content of 14.6%, containing 60% of forage (dry matter basis). Treatments differed by the composition of the concentrates: control in both experiments was based on soybean meal, and experimental treatments were based on proteaginous:linseed (90:10%) blends consisting of faba bean blends (first experiment) or lupin blends (second experiment) presented either raw, extruded at 140°C, or extruded at 160°C. Intake, milk yield and composition, ruminal pH, volatile fatty acids and ammonia kinetics, digestibility, N partitioning, Maillard compounds in feed and feces, plasma AA, and 15N natural enrichment were measured. Data were analyzed using ANOVA according to the MIXED procedure of SAS (version 9.4, SAS Institute Inc., Cary, NC). Ammonia content in ruminal fluid did not significantly change when soybean meal was replaced by either raw or extruded faba bean, but tended to be higher with lupin. Milk yield was increased by 2.6 kg with faba bean blend extruded at 140°C compared with faba bean blend extruded at 160°C. Milk fat and milk protein concentrations were decreased by 3.1 and 2.3 g/kg, respectively, with lupin blends compared with soybean meal. Nitrogen partitioning between milk, feces, and urine did not change. Nitrogen apparent digestibility decreased by 3 g/100 g of N between faba bean blend extruded at low and at high temperatures. The content of Maillard compounds in feces was higher with blends extruded at 160°C than with raw or extruded at 140°C blends within both experiments. Total plasma AA tended to be higher with extruded blends than with raw in the faba bean experiment. Both extrusion temperatures appeared to protect dietary proteins from ruminal degradability, but proteins seemed to be overprotected at 160°C.


Asunto(s)
Alimentación Animal , Bovinos/metabolismo , Lino , Glycine max , Nitrógeno/metabolismo , Semillas , Vicia faba , Animales , Industria Lechera , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Ácidos Grasos Volátiles/metabolismo , Femenino , Lino/metabolismo , Lactancia , Leche/química , Proteínas de la Leche/análisis , Rumen/metabolismo
5.
J Dairy Sci ; 101(3): 2248-2259, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29331464

RESUMEN

During the transition from late gestation to early lactation ruminants experience a negative energy balance (NEB), which is considered to increase susceptibility to mammary infections. Our previous study in 2 divergent lines of sheep selected for high and low somatic cell score (SCS) suggested an association between the response to NEB and genetic susceptibility to mastitis. Forty-eight early-lactation primiparous dairy ewes from the 2 SCS genetic lines were allocated to 2 homogeneous subgroups-an NEB group, which was energy restricted and received 60% of the energy requirements for 15 d, and a control-fed group-to obtain 4 balanced groups of 12 ewes: high-SCS positive energy balance, low-SCS positive energy balance, high-SCS NEB, and low-SCS NEB. High-SCS ewes showed greater weight loss and increased plasmatic concentrations of ß-hydroxybutyrate and nonesterified fatty acids than low-SCS ewes when confronted with an induced NEB. The aim of this study was to further characterize this interaction by combining transcriptomic and phenotypic data with a generalized partial least squares discriminant analysis using mixOmics package framework. A preliminary analysis using 3 blocks of phenotypes (fatty acids, weight and production, blood metabolites) revealed a high correlation between fat-to-protein ratio, ß-hydroxybutyrate, and nonesterified fatty acids concentrations with milk long-chain fatty acid yields. These phenotypes allowed good discrimination of the energy-restricted high-SCS ewes and confirmed a high level of adipose tissue mobilization in this group. A second analysis, which included RNA-seq data, revealed high correlations between the long-chain fatty acid yields in milk and PDK4, CPT1A, SLC25A20, KLF10, and KLF11 expression, highlighting the relationship between mobilization of body reserves and enhanced fatty acids utilization for energy production in blood cells. Finally, analysis of milk composition measured in 1,025 ewes from the 2 genetic lines over 10 yr confirmed significant higher fat-to-protein ratio in high-SCS ewes in early lactation. Altogether, our results strongly confirmed a genetic link between susceptibility to mastitis and metabolic adaptation to energy shortage. Improving genetic resistance to mastitis using SCS should be accompanied by a favorable effect on the response to metabolic stress, especially in highly stressful early lactation. Moreover, this study suggests that the fat-to-protein ratio could be used as a low-cost tool for monitoring energy balance and ketosis during this critical phase of lactation.


Asunto(s)
Recuento de Células/veterinaria , Metabolismo Energético/genética , Lactancia/fisiología , Leche/citología , Ovinos/genética , Ácido 3-Hidroxibutírico/sangre , Tejido Adiposo/metabolismo , Animales , Peso Corporal , Ácidos Grasos/análisis , Ácidos Grasos no Esterificados/sangre , Femenino , Predisposición Genética a la Enfermedad/genética , Mastitis/genética , Mastitis/veterinaria , Leche/química , Proteínas de la Leche/análisis , Embarazo , Enfermedades de las Ovejas/genética
6.
Animal ; 12(1): 183-188, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28637516

RESUMEN

Heating oil and oilseeds results in oxidation products that affect ruminal biohydrogenation of polyunsaturated fatty acids, altering milk fatty acids profile, and could be transferred to milk. An experiment was conducted to investigate the effects of oil heating on rumen and milk fatty acids profile and the transfer of oxidation products to milk. Sunflower oil was heated at 150°C for 15 h and given to lactating dairy cows in a 2×2 arrangement: two groups of two cows, equipped with a ruminal cannula and receiving two diets (containing either heated or unheated oil) during two experimental periods. Oil heating generated hydroperoxides and/or hydroxyacids and aldehydes, in particular trans-2,trans-4-decadienal. In milk, heated oil only significantly decreased trans-11-C18:1 and cis-9,trans-11-CLA percentage compared to non-heated oil, and slightly increased cis-9,cis-12-C18:2 percentage, which was probably linked to an inhibition of the ruminal Δ12 isomerase by oxidative products in the rumen. However, feeding highly oxidized oil did not result in the appearance of hydroperoxides or hydroxyacids in milk and did not increase milk aldehydes content.


Asunto(s)
Bovinos/fisiología , Ácidos Grasos/análisis , Leche/química , Aceite de Girasol/química , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Femenino , Calor , Lactancia/efectos de los fármacos , Peroxidación de Lípido , Leche/normas , Valor Nutritivo , Oxidación-Reducción , Rumen/efectos de los fármacos , Rumen/metabolismo , Aceite de Girasol/farmacología , Ácidos Grasos trans/análisis
7.
J Appl Microbiol ; 123(4): 782-797, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28557277

RESUMEN

Although fat content in usual ruminant diets is very low, fat supplements can be given to farm ruminants to modulate rumen activity or the fatty acid (FA) profile of meat and milk. Unsaturated FAs, which are dominant in common fat sources for ruminants, have negative effects on microbial growth, especially protozoa and fibrolytic bacteria. In turn, the rumen microbiota detoxifies unsaturated FAs (UFAs) through a biohydrogenation (BH) process, transforming dietary UFAs with cis geometrical double-bonds into mainly trans UFAs and, finally, into saturated FAs. Culture studies have provided a large amount of data regarding bacterial species and strains that are affected by UFAs or involved in lipolysis or BH, with a major focus on the Butyrivibrio genus. More recent data using molecular approaches to rumen microbiota extend and challenge these data, but further research will be necessary to improve our understanding of fat and rumen microbiota interactions.


Asunto(s)
Grasas de la Dieta/metabolismo , Microbioma Gastrointestinal , Rumen/microbiología , Rumiantes/metabolismo , Alimentación Animal/análisis , Animales , Grasas de la Dieta/análisis , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Rumen/metabolismo , Rumiantes/microbiología
8.
J Dairy Sci ; 99(1): 480-92, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26601588

RESUMEN

Dairy ruminants experiencing a severe postpartum negative energy balance (NEB) are considered to be more susceptible to mastitis. Although the genetic variability of mastitis resistance is well established, the biological basis of the link between energy metabolism and resistance is mostly unknown. The aim of this study was to characterize the effect of NEB on metabolism and immune response according to the genetic background for mastitis resistance or susceptibility. Forty-eight ewes from high and low somatic cell score (SCS) genetic lines were allocated to 2 homogeneous subgroups 2 wk after lambing: one group (NEB) received an energy-restricted diet to cover 60% of their energy requirements, and the other group received a control (positive energy balance: PEB) diet. Both diets met the protein requirements. After 10 d on either the NEB or PEB diet, all ewes were injected with a Pam3CSK4/MDP solution in one half-udder to induce an inflammatory response. The ewes were monitored for milk production, somatic cell count (SCC), body weight (BW), body condition score (BCS), and blood metabolites. Differential milk cell counts were determined by flow cytometry. Plasma concentrations of glucose, insulin, nonesterified fatty acids (NEFA), ß-hydroxybutyrate (BHB), and triiodothyronine were determined. Energy restriction resulted in an increased fat:protein ratio in milk and decreased milk yield, BW, and BCS. The NEB ewes had significantly higher NEFA and BHB and lower plasma glucose concentrations than PEB ewes, reflecting a mobilization of body reserves and ketone body synthesis. High-SCS ewes had a higher SCS than low-SCS throughout the experiment, except after the inflammatory challenge, which resulted in similar SCS in all 4 groups. A noteworthy interaction between genetic background and diet was evidenced on metabolic parameters and BW. Indeed, high-SCS ewes subjected to NEB showed greater decrease in BW and increased NEFA and BHB concentrations compared with low-SCS ewes. Thus, NEB in early lactation led to extensive mobilization of body reserves and intense ketone body synthesis in mastitis-susceptible sheep. These results reinforce the hypothesis of a genetic association between mastitis susceptibility and energy metabolism and open the way to further studies on the biological basis for this association.


Asunto(s)
Ingestión de Energía/fisiología , Metabolismo Energético , Mastitis/veterinaria , Leche/metabolismo , Enfermedades de las Ovejas/inmunología , Ácido 3-Hidroxibutírico/sangre , Animales , Peso Corporal , Dieta/veterinaria , Susceptibilidad a Enfermedades/veterinaria , Ácidos Grasos no Esterificados/sangre , Femenino , Insulina/sangre , Lactancia , Glándulas Mamarias Animales/metabolismo , Mastitis/inmunología , Leche/citología , Periodo Posparto , Ovinos , Triyodotironina/sangre
9.
J Dairy Sci ; 97(12): 7575-85, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25306272

RESUMEN

Excess dietary nitrogen (EDN) is commonly expected in dairy herds, but no data are available regarding its consequences on cattle immunity. In this study neutrophil functions were assessed during EDN in steers. In experiment 1, 4 one-month periods, 4 diets [16% crude protein (CP; DM basis), 20% CP based on soybean meal, 20% CP based on urea, and 24% CP based on urea and soybean meal], and 4 steers were included in a crossover design to determine the effects of a chronic excess. In experiment 2, the repercussions of an acute excess were assessed with 2 periods of 10 d, the same 4 steers, and 2 diets containing 14 and 20% CP. Sampling was done during the fourth week of each period in experiment 1, and on d 0, 1, 2, 3, 7, and 9 of each period in experiment 2. Individual blood biochemistry parameters were measured and neutrophil factors, such as counts, recovery after isolation, surface expression of CD11b and CD62L, phagocytosis, diapedesis, reactive oxygen species (ROS) production, and bacteria killing, were determined. Data were analyzed by general linear models of R, with period, diet or biochemical component, and animal as explanatory variables. The outcome variables were biochemical or immune variables. The variables diet, period, and animal were forced as fixed effects. Data collected over the entire period of experiment 2 were pooled. Several multiples linear regressions or ANOVA were performed and a Bonferroni correction was applied. In experiment 2 (acute EDN), neutrophil counts were negatively associated with nitrogen intake, conversely to CD62L expression. The observed relative neutropenia may be due to neutrophil margination because CD62L-expressing neutrophils are more likely to stick to endothelium. Interestingly, ROS production was changed by EDN: chronic EDN (experiment 1) was negatively associated with opsonized zymozan (OZ)-induced ROS production and acute EDN (experiment 2) with spontaneous ROS production. For chronic EDN, ROS production upon phorbol 12-myristate 13-acetate was not modified, in contrast to OZ stimulation. Decreased ROS production during chronic EDN probably involves the early events leading to ROS production, as OZ acts through membrane receptors and phorbol 12-myristate 13-acetate directly activates protein kinase C. This is the first study to provide evidence that the modifications of neutrophil functions produced by excess nitrogen depend on the intensity and duration of the excess. Further studies, including epidemiological studies during risk periods, are needed to resolve the issues linked to EDN.


Asunto(s)
Bovinos/inmunología , Proteínas en la Dieta/administración & dosificación , Neutrófilos/efectos de los fármacos , Nitrógeno/farmacología , Amoníaco/sangre , Animales , Bovinos/sangre , Bovinos/fisiología , Estudios Cruzados , Dieta/veterinaria , Proteínas en la Dieta/inmunología , Proteínas en la Dieta/metabolismo , Hematócrito/veterinaria , Masculino , Neutrófilos/inmunología , Nitrógeno/administración & dosificación , Nitrógeno/inmunología , Glycine max/química , Urea/sangre
10.
J Dairy Sci ; 97(9): 5657-67, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24996268

RESUMEN

Heating fat is an efficient way to alter ruminal biohydrogenation (BH) and milk fat quality. Nevertheless, results are variable among studies and this could be due to various heating conditions differently affecting BH. The objectives of this study were to determine the effect of type and duration of heating of soybean oil or seeds on BH in vitro. Ruminal content cultures were incubated to first investigate the effects of roasting duration (no heating, and 0.5- and 6-h roasting) at 125°C and its interaction with fat source (soybean seeds vs. soybean oil), focusing on linoleic acid BH and its intermediates: conjugated linoleic acid (CLA) and trans-C18:1. Additionally, we compared the effects of seed extrusion with the 6 combinations of unheated and roasted oils and seeds. None of the treatments was efficient to protect linoleic acid from BH. Soybean oil resulted in higher trans-11 isomer production than seeds: 5.7 and 1.2 times higher for cis-9,trans-11 CLA and trans-11 C18:1, respectively. A 125°C, 0.5-h roasting increased trans-11 isomer production by 11% compared with no heating and 6-h roasted fat. Extrusion of seeds was more efficient to increase trans-11 C18:1 production than seed roasting, leading to values similar to oils. For other fatty acids, including cis-9,trans-11 CLA, extrusion resulted in similar balances to seeds (mainly 0.5-h-roasted seeds). Extruded oilseeds would be more efficient than roasted seeds to produce trans-11 C18:1; nevertheless, effects of conditions of extrusion need to be explored.


Asunto(s)
Ácidos Grasos/química , Manipulación de Alimentos/métodos , Calor , Semillas/química , Aceite de Soja/química , Animales , Calefacción , Hidrogenación , Ácido Linoleico/química , Ácidos Linoleicos Conjugados/química , Rumen
11.
J Appl Microbiol ; 116(2): 245-57, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24279326

RESUMEN

AIM: Establishment of ruminal bacterial community in dairy calves. METHODS AND RESULTS: Rumen bacterial community was analysed on 6 calves bred according to commercial practices from day one to weaning at day 83 of age, using 454 16S rRNA-based pyrosequencing. Samples taken at day 1 did not produce amplicons. Analysis of data revealed a three-stage implantation process with a progressive but important shift of composition. At day 2, the bacterial community was mainly composed of Proteobacteria (70%) and Bacteroidetes (14%), and Pasteurellaceae was the dominant family (58%). The bacterial community abruptly changed between days 2 and 3, and until day 12, dominant genera were Bacteroides (21%), Prevotella (11%), Fusobacterium (5%) and Streptococcus (4%). From 15 to 83 days, when solid food intake rapidly increased, Prevotella became dominant (42%) and many genera strongly decreased or were no longer detected. A limited number of bacteria genera correlated with feed intake, rumen volatile fatty acids and enzymatic activities. CONCLUSION: The ruminal bacterial community is established before intake of solid food, but solid food arrival in turn shapes this community. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides insight into the establishment of calves' rumen bacterial community and suggests a strong effect of diet.


Asunto(s)
Bacterias/crecimiento & desarrollo , Dieta/veterinaria , Rumen/microbiología , Animales , Animales Recién Nacidos , Animales Lactantes , Bacterias/clasificación , Bacterias/genética , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/crecimiento & desarrollo , Bovinos , Calostro/microbiología , ADN Bacteriano/química , ADN Ribosómico/química , Dieta/clasificación , Ácidos Grasos Volátiles/análisis , Femenino , Fusobacterium/clasificación , Fusobacterium/genética , Fusobacterium/crecimiento & desarrollo , Masculino , Pasteurellaceae/clasificación , Pasteurellaceae/genética , Pasteurellaceae/crecimiento & desarrollo , Prevotella/clasificación , Prevotella/genética , Prevotella/crecimiento & desarrollo , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/crecimiento & desarrollo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Rumen/enzimología , Rumen/metabolismo , Streptococcus/clasificación , Streptococcus/genética , Streptococcus/crecimiento & desarrollo , Destete
12.
J Anim Physiol Anim Nutr (Berl) ; 98(4): 704-13, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24021056

RESUMEN

The ruminal biohydrogenation of c9,c12-18:2 can be affected by the fibre/starch ratio of the diet and the ruminal pH. The objectives of this study were to examine independently in vitro the effects of fermentation substrate (hay vs. corn starch) and buffer pH (6 vs. 7) on the biohydrogenation of c9,c12-18:2 carried out by grape seed oil, focusing on its t11 and t10 pathways, using 6-h ruminal incubations. The experimental design was a 2 × 2 factorial arrangement. Fermentation substrate and pH affected the C18 fatty acid balance in incubated media, but few interactions were observed. Compared with starch, hay as the fermentation substrate favoured the production of 18:0 (×2.3), all trans-18:1 isomers (×12.6) and CLA (×6.1), except c9,t11-CLA, and the disappearance of unsaturated C18 fatty acids, but decreased the production of odd and branched chain fatty acids. Compared with pH 6 buffer, pH 7 buffer resulted in higher c9,c12-18:2 disappearance and CLA production. For c9,t11-CLA, an interaction was noticed between the two factors, leading to the highest production in cultures incubated on hay with the 7 pH buffer. Compared with starch, hay as fermentation substrate favoured the activity of t11 producers, which are fibrolytic bacteria, and the production of t10 isomers, possibly due to the presence of potential t10 producers in hay. Low pH resulted in a decreased t11 isomers production and in a slightly increased t10 isomers production, probably due to a modulation of enzymatic or bacterial activity.


Asunto(s)
Ácidos Grasos/metabolismo , Rumen/metabolismo , Alimentación Animal/análisis , Animales , Líquidos Corporales , Bovinos , Femenino , Fermentación , Concentración de Iones de Hidrógeno , Modelos Biológicos , Poaceae/metabolismo , Almidón/metabolismo
13.
J Dairy Sci ; 96(11): 7167-7180, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24011948

RESUMEN

Heating polyunsaturated fatty acids (PUFA) produces oxidation products, such as hydroperoxides, aldehydes, and oxypolymers, which could be responsible at least in part for modification of PUFA rumen biohydrogenation (BH). Three in vitro experiments were conducted to investigate the effects of linoleic acid (cis-9,cis-12-C18:2) oxidation products on BH. In the first experiment, we studied the effects of free linoleic acid (FLA), heated FLA (HFLA, at 150 °C for 6h), triacylglycerols of linoleic acid (TGLA), heated TGLA (HTGLA, at 150 °C for 6h), 13-hydroperoxide (13HPOD), trans-2-decenal (T2D), and hexanal (HEX) on BH in vitro after 6 and 24h of incubation. In the second experiment, aldehydes differing in chain length and degree of unsaturation [pentanal, HEX, heptanal, nonanal, T2D, trans-2,trans-4-decadienal (T2T4D)] were incubated in vitro for 5h in rumen fluid. In the third experiment, 9-hydroperoxide (9HPOD), 13HPOD, HEX, or T2T4D were incubated for 1h in rumen fluid inactivated with chloramphenicol to investigate their effects on enzyme activity. In experiment 1, heat treatment of TGLA generated TGLA oxypolymers, did not affect cis-9,cis-12-C18:2 disappearance, but did decrease BH intermediates, especially trans-11 isomers. Heating FLA decreased cis-9,cis-12-C18:2 disappearance and cis-9,trans-11-CLA and trans-11-C18:1 production. Treatment with HEX and T2D did not affect cis-9,cis-12-C18:2 disappearance and barely affected production of BH intermediates. The bacterial community was affected by 13HPOD compared with FLA and HFLA, in parallel with an increase in trans-10 isomer production after a 6-h incubation. After 24h of incubation, 13HPOD decreased trans-11 isomer production, but to a lesser extent than HFLA. In experiment 2, some weak but significant effects were observed on BH, unrelated to chain length or degree of unsaturation of aldehydes; the bacterial community was not affected. In experiment 3, 9HPOD inhibited Δ(9)-isomerization, and both 9HPOD and 13HPOD inhibited Δ(12)-isomerization. We concluded that oxypolymers did not affect cis-9,cis-12-C18:2 disappearance. Heating both esterified and free cis-9,cis-12-C18:2 greatly altered Δ(12)-isomerization. Aldehydes had few effects. Hydroperoxides are responsible, at least in part, for the effects of fat heating: 13HPOD increased trans-10 isomer production (probably by affecting the bacterial community) and decreased trans-11 isomer production by inhibiting Δ(12)-isomerase activity, whereas 9HPOD inhibited both isomerases.


Asunto(s)
Bacterias/efectos de los fármacos , Calor , Ácido Linoleico/química , Ácido Linoleico/farmacología , Rumen/enzimología , Rumen/microbiología , Aldehídos/química , Aldehídos/farmacología , Animales , Líquidos Corporales , Hidrogenación/efectos de los fármacos , Isomerismo , Peroxidación de Lípido , Peróxidos Lipídicos/farmacología , Oxidación-Reducción , Rumen/efectos de los fármacos , Rumen/metabolismo , Relación Estructura-Actividad , Triglicéridos/química , Triglicéridos/farmacología
14.
J Dairy Sci ; 96(1): 451-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23127910

RESUMEN

Trans fatty acids (FA), exhibit different biological properties. Among them, cis-9,trans-11 conjugated linoleic acid has some interesting putative health properties, whereas trans-10,cis-12 conjugated linoleic acid has negative effects on cow milk fat production and would negatively affect human health. In high-yielding dairy cows, a shift from trans-11 to trans-10 pathway of biohydrogenation (BH) can occur in the rumen of cows receiving high-concentrate diets, especially when the diet is supplemented with unsaturated fat sources. To study this shift, 4 rumen-fistulated nonlactating Holstein cows were assigned to a 4×4 Latin square design with 4 different diets during 4 periods. Cows received 12 kg of dry matter per day of 4 diets based on corn silage during 4 successive periods: a control diet (22% starch, <3% crude fat on DM basis), a high-starch diet supplemented with wheat plus barley (35% starch, <3% crude fat), a sunflower oil diet supplemented with 5% of sunflower oil (20% starch, 7.6% crude fat), and a high-starch plus sunflower oil diet (33% starch, 7.3% crude fat). Five hours after feeding, proportions of trans-11 BH isomers greatly increased in the rumen content with the addition of sunflower oil, without change in ruminal pH compared with the control diet. Addition of starch to the control diet had no effect on BH pathways but decreased ruminal pH. The addition of a large amount of starch in association with sunflower oil increased trans-10 FA at the expense of trans-11 FA in the rumen content, revealing a trans-11 to trans-10 shift. Interestingly, with this latter diet, ruminal pH did not change compared with a single addition of starch. This trans-11 to trans-10 shift occurred progressively, after a decrease in the proportion of trans-11 FA in the rumen, suggesting that this shift could result from a dysbiosis in the rumen in favor of trans-10-producing bacteria at the expense of those producing trans-11 or a modification of bacterial activities.


Asunto(s)
Dieta/veterinaria , Aceites de Plantas/metabolismo , Almidón/metabolismo , Ácidos Grasos trans/metabolismo , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Animales , Bovinos , Suplementos Dietéticos , Ácidos Grasos Volátiles/análisis , Femenino , Contenido Digestivo/química , Concentración de Iones de Hidrógeno , Hidrogenación , Rumen/metabolismo , Rumen/fisiología , Aceite de Girasol , Ácidos Grasos trans/análisis
15.
J Dairy Sci ; 95(10): 5916-26, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22901477

RESUMEN

Among trans fatty acids, trans-10,cis-12 CLA has negative effects on cow milk fat production and can affect human health. In high-yielding dairy cows, a shift from the trans-11 to the trans-10 pathway of biohydrogenation (BH) can occur in the rumen of cows receiving high-concentrate diets, especially when the diet is supplemented with unsaturated fat sources. In some but not all experiments, vitamin E has been shown to control this shift. To ascertain the effects of vitamin E on this shift of BH pathway, 2 studies were conducted. The first study explored in vitro the effects of addition of natural (RRR-α-tocopherol acetate) and synthetic (dl-α-tocopherol acetate) vitamin E. Compared with control and synthetic vitamin E, the natural form resulted in a greater trans-10/trans-11 ratio; however, the effect was very low, suggesting that vitamin E was neither a limiting factor for rumen BH nor a modulator of the BH pathway. An in vivo study investigated the effect of natural vitamin E (RRR-α-tocopherol) on this shift and subsequent milk fat depression. Six rumen-fistulated lactating Holstein cows were assigned to a 2×2 crossover design. Cows received 20-kg DM of a control diet based on corn silage with 22% of wheat, and after 2 wk of adaptation, the diet was supplemented with 600 g of sunflower oil for 2 more weeks. During the last week of this 4-wk experimental period, cows were divided into 2 groups: an unsupplemented control group and a group receiving 11 g of RRR-α-tocopherol acetate per day. A trans-10 shift of ruminal BH associated with milk fat depression due to oil supplementation of a high-wheat diet was observed, but vitamin E supplementation of dairy cows did not result in a reversal toward a trans-11 BH pathway, and did not restore milk fat content.


Asunto(s)
Carbohidratos de la Dieta/farmacología , Ácidos Grasos/análisis , Leche/química , Aceites de Plantas/farmacología , Rumen/química , Almidón/farmacología , Vitamina E/farmacología , Vitaminas/farmacología , Animales , Bovinos , Dieta/métodos , Dieta/veterinaria , Carbohidratos de la Dieta/metabolismo , Suplementos Dietéticos , Femenino , Contenido Digestivo/química , Ensilaje , Almidón/metabolismo , Aceite de Girasol , Triticum , Zea mays
16.
Animal ; 6(3): 459-67, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22436225

RESUMEN

On the basis of the isomer-specific effects of trans fatty acids (FA) on human health, and the detrimental effect of t10,c12-conjugated linoleic acid (CLA) on cows' milk fat production, there is a need to identify factors that affect the shift from trans-11 to trans-10 pathway during ruminal biohydrogenation of FA. This experiment was conducted in vitro and aimed at separating the effects of the diet of the donor cows from those of the fermentative substrate, which is necessary to prevent this shift. A total of four dry Holstein dairy cows were used in a 4 × 4 Latin square design. They received 12 kg of dry matter per day of four diets based on maize silage during four successive periods: the control diet (22% starch, <3% fat); the high-starch diet, supplemented with wheat plus barley (35% starch, <3% crude fat); the sunflower oil diet, supplemented with 5% of sunflower oil (20% starch, 7.6% crude fat); and the high-starch plus oil diet (33% starch, 7.3% crude fat). Ruminal fluid of each donor cow was incubated for 5 h with four substrates having similar chemical composition to the diets, replacing sunflower oil by pure linoleic acid (LA). The efficiency of isomerisation of LA to CLA was the highest when rumen fluids from cows receiving dietary oil were incubated with added LA. The shift from trans-11 to trans-10 isomers was induced in vitro by high-starch diets and the addition of LA. Oil supplementation to the diet of the donor cows increased this shift. Conversely, the trans-10 isomer balance was always low when no LA was added to incubation cultures. These results showed that a large accumulation of trans-10 FA was only observed with an adapted microflora, as well as an addition of non-esterified LA to the incubation substrate.


Asunto(s)
Bovinos/metabolismo , Dieta/veterinaria , Ácido Linoleico/metabolismo , Aceites de Plantas/metabolismo , Rumen/metabolismo , Almidón/metabolismo , Ácidos Grasos trans/metabolismo , Animales , Fenómenos Fisiológicos Bacterianos , Bovinos/microbiología , Cromatografía de Gases , Suplementos Dietéticos , Femenino , Hidrogenación , Aceites de Plantas/administración & dosificación , Rumen/microbiología , Almidón/administración & dosificación , Aceite de Girasol
17.
J Dairy Sci ; 95(3): 1500-12, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22365231

RESUMEN

The objectives of this study were to characterize the establishment of ruminal fermentation and enzymatic activities in dairy calves from birth to weaning (d 83). Six Holstein calves, immediately separated from their mother at birth, were fed colostrum for 3 d after birth, and thereafter milk replacer, starter pelleted concentrate, and hay until d 83 of age. Ruminal samples were collected from each calf every day for the first 10 d, and additionally at d 12, 15, 19, 22, 26, 29, 33, 36, 40, 43, 47, 50, 55, 62, 69, and 83. Ruminal samples were collected 1h after milk feeding with a stomach tube. The pH and redox potential (E(h)) were immediately measured. Samples were kept for further determination of ammonia nitrogen (NH(3)-N) and volatile fatty acid (VFA) concentrations, and xylanase, amylase, urease, and protease activities. Ruminal pH averaged 6.69, 5.82, and 6.34, from d 1 to 9, d 10 to 40, and d 43 to 83 of age, respectively. At first day of life, the ruminal E(h) value was positive (+224 mV). From d 2 to 9, d 10 to 40, and d 43 to 83 of age, ruminal E(h) averaged -164, -115, and -141 mV, respectively. From d 1 to 3, d 4 to 22, and d 26 to 83 of age, NH(3)-N concentration averaged 60.1, 179.8, and 58.2 mg/L, respectively. No VFA were detected in ruminal samples collected on d 1 of life of calves. From d 2 to 10 and d 12 to 83 of age, ruminal total VFA concentration averaged 19.5 and 84.4mM, respectively. Neither ruminal xylanase or amylase activities were observed at d 1 of age. From d 5 to 15 and d 19 to 83 of age, the xylanase activity averaged 182.2 and 62.4 µmol of sugar released per hour per gram of ruminal content dry matter (DM), respectively. From d 5 to 83 of age, the amylase activity reached 35.4 µmol of sugar released per hour per gram of ruminal content DM. The ruminal ureolytic activity was observed with an average value of 6.9 µg of NH(3)-N released per minute per gram of ruminal content DM over the 83-d experimental period. From d 1 to 4 and d 5 to 83 of age, the proteolytic activity was 8.2 and 27.9 optical density units per hour per gram of ruminal content DM, respectively. The fermentative and enzymatic activities were rapidly established in the rumen from d 2 after birth. Most parameters did not evolve further after 1 mo of age.


Asunto(s)
Bovinos/fisiología , Rumen/enzimología , Acetatos/análisis , Animales , Animales Recién Nacidos/metabolismo , Animales Recién Nacidos/fisiología , Bovinos/metabolismo , Ingestión de Alimentos/fisiología , Ácidos Grasos Volátiles/análisis , Femenino , Fermentación/fisiología , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Propionatos/análisis , Rumen/química , Rumen/fisiología , Destete
18.
J Vet Intern Med ; 26(2): 393-401, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22300328

RESUMEN

BACKGROUND: Cattle are commonly fed soybean meal (SBM) and accidental intoxication sometimes occurs. OBJECTIVES: To describe the biologic and clinical features of SBM intoxication. ANIMALS: Four steers with ruminal cannula. METHODS: Controlled experimental trial. SBM was administered once at 1 and 2% of body weight (BW) via cannula at 2-month intervals. RESULTS: This study showed a 2-phase pathogenic course for 2% BW SBM intoxication. The 1st phase (until 10 hours post-administration) is restricted to ruminal modification with volatile fatty acid overproduction and moderate ruminal ammonia concentration. In the 2nd phase (12-22 hours post-administration), ruminal pH returned to initial values and marked ammonia accumulation occurred in blood, inducing severe metabolic alkalosis with hyperglycemia, hyperinsulinemia, and delayed aciduria (30-40 hours post-administration). Among the clinical signs, nervous signs were only observed during the period with increased plasma ammonia concentration. At 1% BW, ruminal and blood modifications were less pronounced than at 2% BW, and clinical signs were not observed. CONCLUSIONS AND CLINICAL RELEVANCE: Ammonia accumulation in blood during the second phase is the consequence of continued ammonia production, decreased carbohydrate fermentation, and overwhelming of hepatic detoxifying capacity. Because ammonia accumulation is associated with the clinical signs, treatment of SBM intoxication could be similar to treatment of urea intoxication, including rumenotomy, oral administration of cold water and vinegar, and measurement of ruminal pH.


Asunto(s)
Enfermedades de los Bovinos/etiología , Glycine max/toxicidad , Gastropatías/veterinaria , Amoníaco/sangre , Amoníaco/metabolismo , Animales , Análisis Químico de la Sangre , Temperatura Corporal , Bovinos , Enfermedades de los Bovinos/sangre , Enfermedades de los Bovinos/metabolismo , Enfermedades de los Bovinos/fisiopatología , Ácidos Grasos/metabolismo , Concentración de Iones de Hidrógeno , Masculino , Respiración , Rumen/metabolismo , Glycine max/envenenamiento , Gastropatías/etiología , Gastropatías/metabolismo , Gastropatías/fisiopatología
19.
J Dairy Sci ; 94(11): 5634-45, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22032386

RESUMEN

Trans isomers of fatty acids exhibit different health properties. Among them, trans-10,cis-12 conjugated linoleic acid has negative effects on milk fat production and can affect human health. A shift from the trans-11 to the trans-10 pathway of biohydrogenation (BH) can occur in the rumen of dairy cows receiving high-concentrate diets, especially when the diet is supplemented with highly unsaturated fat sources. The differences of BH patterns between linoleic acid (LeA) and linolenic acid (LnA) in such ruminal conditions remain unknown; thus, the aim of this work was to investigate in vitro the effects of starch and sunflower oil in the diet of the donor cows and starch level in the incubates on the BH patterns and efficiencies of LeA and LnA. The design was a 4 × 4 Latin square design with 4 cows, 4 periods, and 4 diets with combinations of 21 or 34% starch and 0 or 5% sunflower oil. The rumen content of each cow during each period was incubated with 4 substrates, combining 2 starch levels and either LeA or LnA addition. Capillary electrophoresis single-strand conformation polymorphism of incubates showed that dietary starch decreased the diversity of the bacterial community and the high-starch plus oil diet modified its structure. High-starch diets poorly affected isomerization and first reduction of LeA and LnA, but decreased the efficiencies of trans-11,cis-15-C18:2 and trans C18:1 reduction. Dietary sunflower oil increased the efficiency of LeA isomerization but decreased the efficiency of trans C18:1 reduction. An interaction between dietary starch and dietary oil resulted in the highest trans-10 isomers production in incubates when the donor cow received the high-starch plus oil diet. The partition between trans-10 and trans-11 isomers was also affected by an interaction between starch level and the fatty acid added to the incubates, showing that the trans-10 shift only occurred with LeA, whereas LnA was mainly hydrogenated via the more usual trans-11 pathway, whatever the starch level in the substrate, although the bacterial communities were not different between LeA and LnA incubates. In LeA incubates, trans-10 isomer production was significantly related to the structure of the bacterial community.


Asunto(s)
Dieta/veterinaria , Grasas Insaturadas en la Dieta/metabolismo , Ácido Linoleico/metabolismo , Ácidos Linolénicos/metabolismo , Rumen/metabolismo , Almidón/metabolismo , Animales , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Bovinos , Suplementos Dietéticos , Ácidos Grasos/análisis , Femenino , Contenido Digestivo/química , Hidrogenación , Rumen/microbiología
20.
J Dairy Sci ; 93(2): 711-22, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20105542

RESUMEN

Sunflower oil heated at 110 or 150 degrees C for 1, 3, or 6h was incubated with ruminal content in order to investigate the effects of temperature and duration of heating of oil on the ruminal biohydrogenation of linoleic acid in vitro. When increased, these 2 parameters acted together to decrease the disappearance of linoleic acid in the media by inhibiting the isomerization of linoleic acid, which led to a decrease in conjugated linoleic acids and trans-C18:1 production. Nevertheless, trans-10 isomer production increased with heating temperature, suggesting an activation of Delta(9)-isomerization, whereas trans-11 isomer production decreased, traducing an inhibition of Delta(12)-isomerization. The amount of peroxides generated during heating was correlated with the proportions of biohydrogenation intermediates so that they might explain, at least in part, the observed effects. The effects of heating temperature and duration on ruminal bacteria community was assessed using capillary electrophoresis single-strand conformation polymorphism. Ruminal bacterial population significantly differed according to heating temperature, but was not affected by heating duration. Heating of fat affected ruminal biohydrogenation, at least in part because of oxidative products generated during heating, by altering enzymatic reactions and bacterial population.


Asunto(s)
Manipulación de Alimentos , Calor , Ácido Linoleico/metabolismo , Aceites de Plantas/metabolismo , Rumen/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Bovinos , Femenino , Hidrogenación , Aceites de Plantas/química , Rumen/microbiología , Aceite de Girasol , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...