Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(9): e0022224, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39166849

RESUMEN

Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate mitogen-activated protein kinase (MAPK) activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high-osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on a high-osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain. IMPORTANCE: Legionella pneumophila grows in a membrane-bound compartment in macrophages during disease. Construction of the compartment requires a dedicated secretion system that translocates virulence proteins into host cells. One of these proteins, LegA7, is shown to activate a stress response pathway in host cells called the mitogen-activated protein kinase (MAPK) pathway. The effects on the mammalian MAPK pathway were reconstructed in yeast, allowing the development of a strategy to identify the role of individual domains of LegA7. A domain similar to cysteine proteases is demonstrated to be critical for impinging on the MAPK pathway, and the catalytic activity of this domain is required for targeting this path. In addition, a conserved series of repeats, called ankyrin repeats, controls this activity. Data are provided that argue the interaction of the ankyrin repeats with unknown targets probably results in activation of the cysteine protease domain.


Asunto(s)
Proteínas Bacterianas , Proteasas de Cisteína , Legionella pneumophila , Legionella pneumophila/genética , Legionella pneumophila/enzimología , Legionella pneumophila/metabolismo , Legionella pneumophila/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Estrés Fisiológico , Humanos , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Dominio Catalítico
2.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39028840

RESUMEN

To remodel their hosts and escape immune defenses, many pathogens rely on large arsenals of proteins (effectors) that are delivered to the host cell using dedicated translocation machinery. Effectors hold significant insight into the biology of both the pathogens that encode them and the host pathways that they manipulate. One of the most powerful systems biology tools for studying effectors is the model organism, Saccharomyces cerevisiae. For many pathogens, the heterologous expression of effectors in yeast is growth inhibitory at a frequency much higher than housekeeping genes, an observation ascribed to targeting conserved eukaryotic proteins. Abrogation of yeast growth inhibition has been used to identify bacterial suppressors of effector activity, host targets, and functional residues and domains within effector proteins. We present here a yeast-based method for enriching for informative, in-frame, missense mutations in a pool of random effector mutants. We benchmark this approach against three effectors from Legionella pneumophila, an intracellular bacterial pathogen that injects a staggering >330 effectors into the host cell. For each protein, we show how in silico protein modeling (AlphaFold2) and missense-directed mutagenesis can be combined to reveal important structural features within effectors. We identify known active site residues within the metalloprotease RavK, the putative active site in SdbB, and previously unidentified functional motifs within the C-terminal domain of SdbA. We show that this domain has structural similarity with glycosyltransferases and exhibits in vitro activity consistent with this predicted function.


Asunto(s)
Proteínas Bacterianas , Legionella pneumophila , Mutagénesis , Mutación Missense , Saccharomyces cerevisiae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Modelos Moleculares
3.
bioRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38562771

RESUMEN

Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate MAPK activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on high osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain.

4.
mBio ; 14(5): e0151023, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37819088

RESUMEN

IMPORTANCE: Toxin-antitoxin (TA) systems are parasitic genetic elements found in almost all bacterial genomes. They are exchanged horizontally between cells and are typically poorly conserved across closely related strains and species. Here, we report the characterization of a tripartite TA system in the bacterial pathogen Legionella pneumophila that is highly conserved across Legionella species genomes. This system (denoted HipBSTLp) is a distant homolog of the recently discovered split-HipA system in Escherichia coli (HipBSTEc). We present bioinformatic, molecular, and structural analyses of the divergence between these two systems and the functionality of this newly described TA system family. Furthermore, we provide evidence to refute previous claims that the toxin in this system (HipTLp) possesses bifunctionality as an L. pneumophila virulence protein. Overall, this work expands our understanding of the split-HipA system architecture and illustrates the potential for undiscovered biology in these abundant genetic elements.


Asunto(s)
Proteínas de Escherichia coli , Legionella pneumophila , Legionella , Sistemas Toxina-Antitoxina , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Sistemas Toxina-Antitoxina/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Legionella/metabolismo , Proteínas Bacterianas/metabolismo
5.
J Bacteriol ; 205(6): e0002923, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37260386

RESUMEN

Most Pseudomonas aeruginosa strains produce bacteriocins derived from contractile or noncontractile phage tails known as R- and F-type pyocins, respectively. These bacteriocins possess strain-specific bactericidal activity against P. aeruginosa and likely increase evolutionary fitness through intraspecies competition. R-type pyocins have been studied extensively and show promise as alternatives to antibiotics. Although they have similar therapeutic potential, experimental studies on F-type pyocins are limited. Here, we provide a bioinformatic and experimental investigation of F-type pyocins. We introduce a systematic naming scheme for genes found in R- and F-type pyocin operons and identify 15 genes invariably found in strains producing F-type pyocins. Five proteins encoded at the 3' end of the F-type pyocin cluster are divergent in sequence and likely determine bactericidal specificity. We use sequence similarities among these proteins to define eleven distinct F-type pyocin groups, five of which had not been previously described. The five genes encoding the variable proteins associate in two modules that have clearly reassorted independently during the evolution of these operons. These proteins are considerably more diverse than the specificity-determining tail fibers of R-type pyocins, suggesting that F-type pyocins may have emerged earlier. Experimental studies on six F-type pyocin groups show that each displays a distinct spectrum of bactericidal activity. This activity is strongly influenced by the lipopolysaccharide O-antigen type, but other factors also play a role. F-type pyocins appear to kill as efficiently as R-type pyocins. These studies set the stage for the development of F-type pyocins as antibacterial therapeutics. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that causes antibiotic-resistant infections with high mortality rates, particularly in immunocompromised individuals and cystic fibrosis patients. Due to the increasing frequency of multidrug-resistant P. aeruginosa infections, there is great need for the development of alternative therapeutics. In this study, we investigate one such potential therapeutic: F-type pyocins, which are bacteriocins naturally produced by P. aeruginosa that resemble noncontractile phage tails. We show that they are potent killers of P. aeruginosa and identify their probable bactericidal specificity determinants, which opens up the possibility of engineering them to precisely target strains of pathogenic bacteria. The resemblance of F-type pyocins to well-characterized phage tails will greatly facilitate their development into effective antibacterials.


Asunto(s)
Bacteriocinas , Bacteriófagos , Humanos , Piocinas/farmacología , Pseudomonas aeruginosa/metabolismo , Bacteriocinas/genética , Bacteriocinas/farmacología , Bacteriocinas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacteriófagos/metabolismo
6.
mBio ; 13(6): e0217122, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36314797

RESUMEN

In bacteria, the mechanisms used to repair DNA lesions during genome replication include homologous recombination between sister chromosomes. This can lead to the formation of chromosome dimers if an odd number of crossover events occurs. The dimers must be resolved before cell separation to ensure genomic stability and cell viability. Dimer resolution is achieved by the broadly conserved dif/Xer system, which catalyzes one additional crossover event immediately prior to cell separation. While dif/Xer systems have been characterized or predicted in the vast majority of proteobacteria, no homologs to dif or xer have been identified in the order Legionellales. Here, we report the discovery of a distinct single-recombinase dif/Xer system in the intracellular pathogen Legionella pneumophila. The dif site was uncovered by our analysis of Legionella mobile element-1 (LME-1), which harbors a dif site mimic and integrates into the L. pneumophila genome via site-specific recombination. We demonstrate that lpg1867 (here named xerL) encodes a tyrosine recombinase that is necessary and sufficient for catalyzing recombination at the dif site and that deletion of dif or xerL causes filamentation along with extracellular and intracellular growth defects. We show that the dif/XerL system is present throughout Legionellales and that Coxiella burnetii XerL and its cognate dif site can functionally substitute for the native system in L. pneumophila. Finally, we describe an unexpected link between C. burnetii dif/Xer and the maintenance of its virulence plasmids. IMPORTANCE The maintenance of circular chromosomes depends on the ability to resolve aberrant chromosome dimers after they form. In most proteobacteria, broadly conserved Xer recombinases catalyze single crossovers at short, species-specific dif sites located near the replication terminus. Chromosomal dimerization leads to the formation of two copies of dif within the same molecule, leading to rapid site-specific recombination and conversion back into chromosome monomers. The apparent absence of chromosome dimer resolution mechanisms in Legionellales has been a mystery to date. By studying a phage-like mobile genetic element, LME-1, we have identified a previously unknown single-recombinase dif/Xer system that is not only widespread across Legionellales but whose activity is linked to virulence in two important human pathogens.


Asunto(s)
Proteínas de Escherichia coli , Gammaproteobacteria , Humanos , Recombinasas/genética , Plásmidos , Escherichia coli/genética , Cromosomas Bacterianos , Gammaproteobacteria/genética , Integrasas/genética , Proteínas de Escherichia coli/genética
7.
Appl Environ Microbiol ; 87(17): e0046721, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34132590

RESUMEN

Legionella pneumophila is a ubiquitous freshwater pathogen and the causative agent of Legionnaires' disease. L. pneumophila growth within protists provides a refuge from desiccation, disinfection, and other remediation strategies. One outstanding question has been whether this protection extends to phages. L. pneumophila isolates are remarkably devoid of prophages and to date no Legionella phages have been identified. Nevertheless, many L. pneumophila isolates maintain active CRISPR-Cas defenses. So far, the only known target of these systems is an episomal element that we previously named Legionella mobile element 1 (LME-1). The continued expansion of publicly available genomic data promises to further our understanding of the role of these systems. We now describe over 150 CRISPR-Cas systems across 600 isolates to establish the clearest picture yet of L. pneumophila's adaptive defenses. By searching for targets of 1,500 unique CRISPR-Cas spacers, LME-1 remains the only identified CRISPR-Cas targeted integrative element. We identified 3 additional LME-1 variants-all targeted by previously and newly identified CRISPR-Cas spacers-but no other similar elements. Notably, we also identified several spacers with significant sequence similarity to microviruses, specifically those within the subfamily Gokushovirinae. These spacers are found across several different CRISPR-Cas arrays isolated from geographically diverse isolates, indicating recurrent encounters with these phages. Our analysis of the extended Legionella CRISPR-Cas spacer catalog leads to two main conclusions: current data argue against CRISPR-Cas targeted integrative elements beyond LME-1, and the heretofore unknown L. pneumophila phages are most likely lytic gokushoviruses. IMPORTANCE Legionnaires' disease is an often-fatal pneumonia caused by Legionella pneumophila, which normally grows inside amoebae and other freshwater protists. L. pneumophila trades diminished access to nutrients for the protection and isolation provided by the host. One outstanding question is whether L. pneumophila is susceptible to phages, given the protection provided by its intracellular lifestyle. In this work, we use Legionella CRISPR spacer sequences as a record of phage infection to predict that the "missing" L. pneumophila phages belong to the microvirus subfamily Gokushovirinae. Gokushoviruses are known to infect another intracellular pathogen, Chlamydia. How do gokushoviruses access L. pneumophila (and Chlamydia) inside their "cozy niches"? Does exposure to phages happen during a transient extracellular period (during cell-to-cell spread) or is it indicative of a more complicated environmental lifestyle? One thing is clear, 100 years after their discovery, phages continue to hold important secrets about the bacteria upon which they prey.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Legionella pneumophila/virología , Microviridae/aislamiento & purificación , Bacteriófagos/clasificación , Bacteriófagos/genética , Sistemas CRISPR-Cas , Elementos Transponibles de ADN , Humanos , Legionella pneumophila/genética , Enfermedad de los Legionarios/microbiología , Microviridae/clasificación , Microviridae/genética , Filogenia
8.
Microbiol Resour Announc ; 10(22): e0049221, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34080903

RESUMEN

Staphylococcus chromogenes can cause subclinical mastitis in cows, and some strains have also demonstrated antibacterial activity against pathogens such as methicillin-resistant Staphylococcus aureus (MRSA). Here, we report the draft genome sequence of the S. chromogenes type strain ATCC 43764, which secretes the prodrug 6-thioguanine (6-TG), which antagonizes MRSA virulence.

9.
Nat Commun ; 12(1): 1887, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767207

RESUMEN

Coagulase-negative staphylococci and Staphylococcus aureus colonize similar niches in mammals and conceivably compete for space and nutrients. Here, we report that a coagulase-negative staphylococcus, Staphylococcus chromogenes ATCC43764, synthesizes and secretes 6-thioguanine (6-TG), a purine analog that suppresses S. aureus growth by inhibiting de novo purine biosynthesis. We identify a 6-TG biosynthetic gene cluster in S. chromogenes and other coagulase-negative staphylococci including S. epidermidis, S. pseudintermedius and S. capitis. Recombinant S. aureus strains harbouring this operon produce 6-TG and, when used in subcutaneous co-infections in mice with virulent S. aureus USA300, protect the host from necrotic lesion formation. Used prophylactically, 6-TG reduces necrotic skin lesions in mice infected with USA300, and this effect is mediated by abrogation of toxin production. RNAseq analyses reveal that 6-TG downregulates expression of genes coding for purine biosynthesis, the accessory gene regulator (agr) and ribosomal proteins in S. aureus, providing an explanation for its effect on toxin production.


Asunto(s)
Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus/genética , Staphylococcus/metabolismo , Tioguanina/metabolismo , Animales , Proteínas Bacterianas/biosíntesis , Coagulasa/deficiencia , Femenino , Ratones , Ratones Endogámicos BALB C , Purinas/biosíntesis , Proteínas Ribosómicas/biosíntesis , Staphylococcus aureus/patogenicidad , Staphylococcus capitis/metabolismo , Staphylococcus epidermidis/metabolismo , Tioguanina/farmacología , Transactivadores/biosíntesis
10.
G3 (Bethesda) ; 10(3): 1039-1050, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31937548

RESUMEN

In bacteria and archaea, several distinct types of CRISPR-Cas systems provide adaptive immunity through broadly similar mechanisms: short nucleic acid sequences derived from foreign DNA, known as spacers, engage in complementary base pairing with invasive genetic elements setting the stage for nucleases to degrade the target DNA. A hallmark of type I CRISPR-Cas systems is their ability to acquire spacers in response to both new and previously encountered invaders (naïve and primed acquisition, respectively). Our phylogenetic analyses of 43 L. pneumophila type I-F CRISPR-Cas systems and their resident genomes suggest that many of these systems have been horizontally acquired. These systems are frequently encoded on plasmids and can co-occur with nearly identical chromosomal loci. We show that two such co-occurring systems are highly protective and undergo efficient primed acquisition in the lab. Furthermore, we observe that targeting by one system's array can prime spacer acquisition in the other. Lastly, we provide experimental and genomic evidence for a model in which primed acquisition can efficiently replenish a depleted type I CRISPR array following a mass spacer deletion event.


Asunto(s)
Legionella pneumophila/genética , Sistemas CRISPR-Cas , Genómica , Filogenia , Plásmidos
11.
Nat Commun ; 9(1): 4549, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382091

RESUMEN

Src homology 2 (SH2) domains play a critical role in signal transduction in mammalian cells by binding to phosphorylated Tyr (pTyr). Apart from a few isolated cases in viruses, no functional SH2 domain has been identified to date in prokaryotes. Here we identify 93 SH2 domains from Legionella that are distinct in sequence and specificity from mammalian SH2 domains. The bacterial SH2 domains are not only capable of binding proteins or peptides in a Tyr phosphorylation-dependent manner, some bind pTyr itself with micromolar affinities, a property not observed for mammalian SH2 domains. The Legionella SH2 domains feature the SH2 fold and a pTyr-binding pocket, but lack a specificity pocket found in a typical mammalian SH2 domain for recognition of sequences flanking the pTyr residue. Our work expands the boundary of phosphotyrosine signalling to prokaryotes, suggesting that some bacterial effector proteins have acquired pTyr-superbinding characteristics to facilitate bacterium-host interactions.


Asunto(s)
Proteínas Bacterianas/química , Legionella/metabolismo , Dominios Homologos src , Secuencia de Aminoácidos , Animales , Sitios de Unión , Genoma Bacteriano , Humanos , Legionella/genética , Modelos Moleculares , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosfotirosina/metabolismo , Unión Proteica , Células U937
12.
Cell Rep ; 23(2): 568-583, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642013

RESUMEN

Legionella pneumophila translocates the largest known arsenal of over 330 pathogenic factors, called "effectors," into host cells during infection, enabling L. pneumophila to establish a replicative niche inside diverse amebas and human macrophages. Here, we reveal that the L. pneumophila effectors MavC (Lpg2147) and MvcA (Lpg2148) are structural homologs of cycle inhibiting factor (Cif) effectors and that the adjacent gene, lpg2149, produces a protein that directly inhibits their activity. In contrast to canonical Cifs, both MavC and MvcA contain an insertion domain and deamidate the residue Gln40 of ubiquitin but not Gln40 of NEDD8. MavC and MvcA are functionally diverse, with only MavC interacting with the human E2-conjugating enzyme UBE2N (Ubc13). MavC deamidates the UBE2N∼Ub conjugate, disrupting Lys63 ubiquitination and dampening NF-κB signaling. Combined, our data reveal a molecular mechanism of host manipulation by pathogenic bacteria and highlight the complex regulatory mechanisms integral to L. pneumophila's pathogenic strategy.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/patogenicidad , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Legionella pneumophila/metabolismo , Proteína NEDD8/metabolismo , FN-kappa B/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
13.
J Biol Chem ; 293(9): 3307-3320, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29301934

RESUMEN

Host colonization by Gram-negative pathogens often involves delivery of bacterial proteins called "effectors" into the host cell. The pneumonia-causing pathogen Legionella pneumophila delivers more than 330 effectors into the host cell via its type IVB Dot/Icm secretion system. The collective functions of these proteins are the establishment of a replicative niche from which Legionella can recruit cellular materials to grow while evading lysosomal fusion inhibiting its growth. Using a combination of structural, biochemical, and in vivo approaches, we show that one of these translocated effector proteins, Ceg4, is a phosphotyrosine phosphatase harboring a haloacid dehalogenase-hydrolase domain. Ceg4 could dephosphorylate a broad range of phosphotyrosine-containing peptides in vitro and attenuated activation of MAPK-controlled pathways in both yeast and human cells. Our findings indicate that L. pneumophila's infectious program includes manipulation of phosphorylation cascades in key host pathways. The structural and functional features of the Ceg4 effector unraveled here provide first insight into its function as a phosphotyrosine phosphatase, paving the way to further studies into L. pneumophila pathogenicity.


Asunto(s)
Interacciones Huésped-Patógeno , Legionella pneumophila/enzimología , Sistema de Señalización de MAP Quinasas , Proteínas Tirosina Fosfatasas/metabolismo , Retículo Endoplásmico/metabolismo , Activación Enzimática , Células HeLa , Humanos , Legionella pneumophila/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-29250488

RESUMEN

The 1976 outbreak of Legionnaires' disease led to the discovery of the intracellular bacterial pathogen Legionella pneumophila. Given their impact on human health, Legionella species and the mechanisms responsible for their replication within host cells are often studied in alveolar macrophages, the primary human cell type associated with disease. Despite the potential severity of individual cases of disease, Legionella are not spread from person-to-person. Thus, from the pathogen's perspective, interactions with human cells are accidents of time and space-evolutionary dead ends with no impact on Legionella's long-term survival or pathogenic trajectory. To understand Legionella as a pathogen is to understand its interaction with its natural hosts: the polyphyletic protozoa, a group of unicellular eukaryotes with a staggering amount of evolutionary diversity. While much remains to be understood about these enigmatic hosts, we summarize the current state of knowledge concerning Legionella's natural host range, the diversity of Legionella-protozoa interactions, the factors influencing these interactions, the importance of avoiding the generalization of protozoan-bacterial interactions based on a limited number of model hosts and the central role of protozoa to the biology, evolution, and persistence of Legionella in the environment.


Asunto(s)
Amébidos/microbiología , Interacciones Huésped-Patógeno , Legionella/patogenicidad , Enfermedad de los Legionarios/microbiología , Enfermedad de los Legionarios/parasitología , Acanthamoeba/microbiología , Amoeba/microbiología , Biodiversidad , Evolución Biológica , Ambiente , Hartmannella/microbiología , Legionella/fisiología , Legionella pneumophila/patogenicidad , Legionella pneumophila/fisiología , Enfermedad de los Legionarios/transmisión , Macrófagos Alveolares/microbiología , Naegleria/microbiología
15.
RNA ; 23(10): 1525-1538, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28724535

RESUMEN

CRISPR-Cas is a bacterial and archaeal adaptive immune system that uses short, invader-derived sequences termed spacers to target invasive nucleic acids. Upon recognition of previously encountered invaders, the system can stimulate secondary spacer acquisitions, a process known as primed adaptation. Previous studies of primed adaptation have been complicated by intrinsically high interference efficiency of most systems against bona fide targets. As such, most primed adaptation to date has been studied within the context of imperfect sequence complementarity between spacers and targets. Here, we take advantage of a native type I-C CRISPR-Cas system in Legionella pneumophila that displays robust primed adaptation even within the context of a perfectly matched target. Using next-generation sequencing to survey acquired spacers, we observe strand bias and positional preference that are consistent with a 3'-5' translocation of the adaptation machinery. We show that spacer acquisition happens in a wide range of frequencies across the plasmid, including a remarkable hotspot that predominates irrespective of the priming strand. We systematically characterize protospacer sequence constraints in both adaptation and interference and reveal extensive flexibilities regarding the protospacer adjacent motif in both processes. Lastly, in a strain with a genetically truncated CRISPR array, we observe increased interference efficiency, which, when coupled with forced maintenance of a targeted plasmid, provides a useful experimental system to study spacer loss. Based on these observations, we propose that the Legionella pneumophila type I-C system represents a powerful model to study primed adaptation and the interplay between CRISPR interference and adaptation.


Asunto(s)
Sistemas CRISPR-Cas , Legionella pneumophila/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Motivos de Nucleótidos , Plásmidos
16.
Mol Syst Biol ; 12(12): 893, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27986836

RESUMEN

Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector-effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector-effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila-translocated substrates. While capturing all known examples of effector-effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct-a hallmark of an emerging class of proteins called metaeffectors, or "effectors of effectors". Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector-effector modulation, may be a common feature of many intracellular pathogens-with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/patogenicidad , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Legionella pneumophila/metabolismo , Modelos Biológicos , Mapas de Interacción de Proteínas , Biología de Sistemas/métodos
17.
Cell Microbiol ; 18(10): 1319-38, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26936325

RESUMEN

Clustered regularly interspaced short palindromic repeats with CRISPR-associated gene (CRISPR-Cas) systems are widely recognized as critical genome defense systems that protect microbes from external threats such as bacteriophage infection. Several isolates of the intracellular pathogen Legionella pneumophila possess multiple CRISPR-Cas systems (type I-C, type I-F and type II-B), yet the targets of these systems remain unknown. With the recent observation that at least one of these systems (II-B) plays a non-canonical role in supporting intracellular replication, the possibility remained that these systems are vestigial genome defense systems co-opted for other purposes. Our data indicate that this is not the case. Using an established plasmid transformation assay, we demonstrate that type I-C, I-F and II-B CRISPR-Cas provide protection against spacer targets. We observe efficient laboratory acquisition of new spacers under 'priming' conditions, in which initially incomplete target elimination leads to the generation of new spacers and ultimate loss of the invasive DNA. Critically, we identify the first known target of L. pneumophila CRISPR-Cas: a 30 kb episome of unknown function whose interbacterial transfer is guarded against by CRISPR-Cas. We provide evidence that the element can subvert CRISPR-Cas by mutating its targeted sequences - but that primed spacer acquisition may limit this mechanism of escape. Rather than generally impinging on bacterial fitness, this element drives a host specialization event - with improved fitness in Acanthamoeba but a reduced ability to replicate in other hosts and conditions. These observations add to a growing body of evidence that host range restriction can serve as an existential threat to L. pneumophila in the wild.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Legionella pneumophila/genética , Acanthamoeba castellanii/microbiología , Secuencia de Bases , Secuencia Conservada , Evolución Molecular , Genes Bacterianos , Interacciones Huésped-Patógeno , Legionella pneumophila/crecimiento & desarrollo , Viabilidad Microbiana , Análisis de Secuencia de ADN
18.
Curr Opin Microbiol ; 29: 74-80, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26709975

RESUMEN

Many bacterial pathogens use dedicated translocation systems to deliver arsenals of effector proteins to their hosts. Once inside the host cytosol, these effectors modulate eukaryotic cell biology to acquire nutrients, block microbial degradation, subvert host defenses, and enable pathogen transmission to other hosts. Among all bacterial pathogens studied to date, the gram-negative pathogen, Legionella pneumophila, maintains the largest arsenal of effectors, with over 330 effector proteins translocated by the Dot/Icm type IVB translocation system. In this review, I will discuss some of the recent work on understanding the consequences of this large arsenal. I will also present several models that seek to explain how L. pneumophila has acquired and subsequently maintained so many more effectors than its peers.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/microbiología , Proteínas Portadoras/metabolismo , Citosol/microbiología , Genoma Bacteriano , Interacciones Huésped-Patógeno/fisiología , Legionella pneumophila/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Transporte de Proteínas
19.
Inflamm Bowel Dis ; 22(1): 1-12, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26444104

RESUMEN

BACKGROUND: Mucosal-associated Escherichia coli are commonly found in inflamed tissues during inflammatory bowel disease (IBD). These bacteria often possess an adherent and invasive phenotype but lack virulence-associated features of well-described intestinal E. coli pathogens, and are of diverse serology and phylotypes, making it difficult to correlate strain characteristics with exacerbations of disease. METHODS: The genome sequences of 14 phenotypically assigned adherent-invasive Escherichia coli (AIEC) isolates obtained from intestinal biopsies of patients with IBD were compared with the genome sequences of 37 other pathogenic and commensal E. coli available from public databases. RESULTS: Core genome-based phylogenetic analyses and genome-wide comparison of genetic content established the existence of a closely related cluster of AIEC strains with 3 distinct genetic insertions differentiating them from commensal E. coli. These strains are of the B2 phylotype have a variant type VI secretion system (T6SS-1), and are highly related to extraintestinal pathogenic E. coli, suggesting that these 2 clinically distinct pathovars have common virulence strategies. Four other mucosally adherent E. coli strains from patients with IBD were of diverse phylogenetic origins and lacked the 3 genetic features, suggesting that they are not related to the B2 AIEC cluster. Although AIEC are often considered as having a unique association with Crohn's disease, isolates from Crohn's disease and ulcerative colitis were genetically indistinguishable. CONCLUSIONS: B2 AIEC thus represent a closely related cluster of IBD-associated E. coli strains that are distinct from normal commensal isolates, and which should be considered separately from the phenotypically similar but genetically distinct non-B2 AIEC strains when considering their association with intestinal pathogenesis.


Asunto(s)
Adhesión Bacteriana/genética , Infecciones por Escherichia coli/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Variación Genética/genética , Genoma Bacteriano , Enfermedades Inflamatorias del Intestino/microbiología , Escherichia coli/clasificación , Infecciones por Escherichia coli/diagnóstico , Humanos , Enfermedades Inflamatorias del Intestino/diagnóstico , Fenotipo , Filogenia , Virulencia
20.
Proteins ; 83(12): 2319-25, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26426142

RESUMEN

Legionella pneumophila, the intracellular pathogen that can cause severe pneumonia known as Legionnaire's disease, translocates close to 300 effectors inside the host cell using Dot/Icm type IVB secretion system. The structure and function for the majority of these effector proteins remains unknown. Here, we present the crystal structure of the L. pneumophila effector Lem10. The structure reveals a multidomain organization with the largest C-terminal domain showing strong structural similarity to the HD protein superfamily representatives. However, Lem10 lacks the catalytic His-Asp residue pair and does not show any in vitro phosphohydrolase enzymatic activity, typical for HD proteins. While the biological function of Lem10 remains elusive, our analysis shows that similar distinct features are shared by a significant number of HD domains found in Legionella proteins, including the SidE family of effectors known to play an important role during infection. Taken together our data point to the presence of a specific group of non-catalytic Legionella HD domains, dubbed LHDs, which are involved in pathogenesis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Legionella pneumophila/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...