RESUMEN
Borna disease virus 1 (BoDV-1) is the causative agent of Borna disease, a fatal neurologic disorder of domestic mammals and humans, resulting from spill-over infection from its natural reservoir host, the bicolored white-toothed shrew (Crocidura leucodon). The known BoDV-1-endemic area is remarkably restricted to parts of Germany, Austria, Switzerland and Liechtenstein. To gain comprehensive data on its occurrence, we analysed diagnostic material from suspected BoDV-1-induced encephalitis cases based on clinical and/or histopathological diagnosis. BoDV-1 infection was confirmed by RT-qPCR in 207 domestic mammals, 28 humans and seven wild shrews. Thereby, this study markedly raises the number of published laboratory-confirmed human BoDV-1 infections and provides a first comprehensive summary. Generation of 136 new BoDV-1 genome sequences from animals and humans facilitated an in-depth phylogeographic analysis, allowing for the definition of risk areas for zoonotic BoDV-1 transmission and facilitating the assessment of geographical infection sources. Consistent with the low mobility of its reservoir host, BoDV-1 sequences showed a remarkable geographic association, with individual phylogenetic clades occupying distinct areas. The closest genetic relatives of most human-derived BoDV-1 sequences were located at distances of less than 40 km, indicating that spill-over transmission from the natural reservoir usually occurs in the patient´s home region.
Asunto(s)
Enfermedad de Borna , Virus de la Enfermedad de Borna , Epidemiología Molecular , Filogenia , Filogeografía , Musarañas , Animales , Virus de la Enfermedad de Borna/genética , Virus de la Enfermedad de Borna/fisiología , Humanos , Enfermedad de Borna/epidemiología , Enfermedad de Borna/virología , Musarañas/virología , Femenino , Masculino , Alemania/epidemiología , Reservorios de Enfermedades/virología , Genoma Viral/genética , Austria/epidemiología , Zoonosis/epidemiología , Zoonosis/virología , Zoonosis/transmisión , Suiza/epidemiología , Adulto , Persona de Mediana EdadRESUMEN
Host-directed antivirals (HDAs) represent an attractive treatment option and a strategy for pandemic preparedness, especially due to their potential broad-spectrum antiviral activity and high barrier to resistance development. Particularly, dual-targeting HDAs offer a promising approach for antiviral therapy by simultaneously disrupting multiple pathways essential for viral replication. Izumerogant (IMU-935) targets two host proteins, (i) the retinoic acid receptor-related orphan receptor γ isoform 1 (RORγ1), which modulates cellular cholesterol metabolism, and (ii) the enzyme dihydroorotate dehydrogenase (DHODH), which is involved in de novo pyrimidine synthesis. Here, we synthesized optimized derivatives of izumerogant and characterized their antiviral activity in comparison to a recently described structurally distinct RORγ/DHODH dual inhibitor. Cell culture-based infection models for enveloped and non-enveloped DNA and RNA viruses, as well as a retrovirus, demonstrated high potency and broad-spectrum activity against human viral pathogens for RORγ/DHODH dual inhibitors at nanomolar concentrations. Comparative analyses with equipotent single-target inhibitors in metabolite supplementation approaches revealed that the dual-targeting mode represents the mechanistic basis for the potent antiviral activity. For SARS-CoV-2, an optimized dual inhibitor completely blocked viral replication in human airway epithelial cells at 5 nM and displayed a synergistic drug interaction with the nucleoside analog molnupiravir. In a SARS-CoV-2 mouse model, treatment with a dual inhibitor alone, or in combination with molnupiravir, reduced the viral load by 7- and 58-fold, respectively. Considering the clinical safety, oral bioavailability, and tolerability of izumerogant in a recent Phase I study, izumerogant-like drugs represent potent dual-targeting antiviral HDAs with pronounced broad-spectrum activity for further clinical development.
RESUMEN
Long-acting passive immunization strategies are needed to protect immunosuppressed vulnerable groups from infectious diseases. To further explore this concept for COVID-19, we constructed Adeno-associated viral (AAV) vectors encoding the human variable regions of the SARS-CoV-2 neutralizing antibody, TRES6, fused to murine constant regions. An optimized vector construct was packaged in hepatotropic (AAV8) or myotropic (AAVMYO) AAV capsids and injected intravenously into syngeneic TRIANNI-mice. The highest TRES6 serum concentrations (511 µg/ml) were detected 24 weeks after injection of the myotropic vector particles and mean TRES6 serum concentrations remained above 100 µg/ml for at least one year. Anti-drug antibodies or TRES6-specific T cells were not detectable. After injection of the AAV8 particles, vector mRNA was detected in the liver, while the AAVMYO particles led to high vector mRNA levels in the heart and skeletal muscle. The analysis of the Fc-glycosylation pattern of the TRES6 serum antibodies revealed critical differences between the capsids that coincided with different binding activities to murine Fc-γ-receptors. Concomitantly, the vector-based immune prophylaxis led to protection against SARS-CoV-2 infection in K18-hACE2 mice. High and long-lasting expression levels, absence of anti-drug antibodies and favourable Fc-γ-receptor binding activities warrant further exploration of myotropic AAV vector-based delivery of antibodies and other biologicals.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Dependovirus , Vectores Genéticos , Receptores de IgG , SARS-CoV-2 , Animales , Dependovirus/genética , SARS-CoV-2/inmunología , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Ratones , Humanos , COVID-19/inmunología , COVID-19/prevención & control , Vectores Genéticos/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Receptores de IgG/metabolismo , Receptores de IgG/genética , Receptores de IgG/inmunología , Tropismo Viral , Inmunización PasivaRESUMEN
Human cytomegalovirus is a ubiquitous herpesvirus that, while latent in most individuals, poses a great risk to immunocompromised patients. In contrast to directly acting traditional antiviral drugs, such as ganciclovir, we aim to emulate a physiological infection control using T cells. For this, we constructed several bispecific T-cell engager (BiTE) constructs targeting different viral glycoproteins of the murine cytomegalovirus and evaluated them in vitro for their efficacy. To isolate the target specific effect without viral immune evasion, we established stable reporter cell lines expressing the viral target glycoprotein B, and the glycoprotein complexes gN-gM and gH-gL, as well as nano-luciferase (nLuc). First, we evaluated binding capacities using flow cytometry and established killing assays, measuring nLuc-release upon cell lysis. All BiTE constructs proved to be functional mediators for T-cell recruitment and will allow a proof of concept for this treatment option. This might pave the way for strikingly safer immunosuppression in vulnerable patient groups.
Asunto(s)
Muromegalovirus , Linfocitos T , Animales , Linfocitos T/inmunología , Ratones , Muromegalovirus/inmunología , Muromegalovirus/fisiología , Humanos , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/inmunología , Línea Celular , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismoRESUMEN
The potency of antibody neutralization in cell culture has been used as the key criterion for selection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for clinical development. As other aspects may also influence the degree of protection in vivo, we compared the efficacy of two neutralizing monoclonal antibodies (TRES6 and 4C12) targeting different epitopes of the receptor binding domain (RBD) of SARS-CoV-2 in a prophylactic setting in rhesus monkeys. All four animals treated with TRES6 had reduced viral loads in the upper respiratory tract 2 days after naso-oropharyngeal challenge with the Alpha SARS-CoV-2 variant. Starting 2 days after challenge, mutations conferring resistance to TRES6 were dominant in two of the rhesus monkeys, with both animals failing to maintain reduced viral loads. Consistent with its lower serum neutralization titer at the day of challenge, prophylaxis with 4C12 tended to suppress viral load at day 2 less efficiently than TRES6. However, a week after challenge, mean viral loads in the lower respiratory tract in 4C12-treated animals were lower than in the TRES6 group and no mutations conferring resistance to 4C12 could be detected in viral isolates from nasal or throat swabs. Thus, genetic barrier to resistance seems to be a critical parameter for the efficacy of prophylaxis with monoclonal antibodies against SARS-CoV-2. Furthermore, comparison of antibody concentrations in respiratory secretions to those in serum shows reduced distribution of the 4C12 antibody into respiratory secretions and a delay in the appearance of antibodies in bronchoalveolar lavage fluid compared to their appearance in secretions of the upper respiratory tract.IMPORTANCEMonoclonal antibodies are a powerful tool for the prophylaxis and treatment of acute viral infections. Hence, they were one of the first therapeutic agents licensed for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Oftentimes, the main criterion for the selection of antibodies for clinical development is their potency of neutralization in cell culture. By comparing two antibodies targeting the Spike protein of SARS-CoV-2, we now observed that the antibody that neutralized SARS-CoV-2 more efficiently in cell culture suppressed viral load in challenged rhesus monkeys to a lesser extent. Extraordinary rapid emergence of mutants of the challenge virus, which had lost their sensitivity to the antibody, was identified as the major reason for the reduced efficacy of the antibody in rhesus monkeys. Therefore, the viral genetic barrier to resistance to antibodies also affects their efficacy.
Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Modelos Animales de Enfermedad , Macaca mulatta , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Carga Viral , Animales , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Monoclonales/inmunología , COVID-19/inmunología , COVID-19/virología , COVID-19/prevención & control , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Humanos , Mutación , Epítopos/inmunología , Pruebas de NeutralizaciónRESUMEN
Tick-borne encephalitis virus (TBEV) is the most important tick-transmitted neurotropic flavivirus in Europe and Asia. Our analysis aimed to investigate the contribution of TBEV-specific antibody detection by serological assays and TBEV RNA detection by real-time PCR to the diagnosis of tick-borne encephalitis (TBE). We analyzed data from 3713 patients from 16 years of laboratory TBEV diagnostics in an endemic area in Southern Germany. During this period, 126 cases of TBE were diagnosed. TBEV-specific IgM ELISA tests showed a high clinical sensitivity (96.8%) and a very high clinical specificity (99.7%). In immunocompetent patients, TBE was reliably diagnosed by detection of TBEV IgM antibodies in serum. Intrathecal TBEV IgG antibody synthesis was detected in 46 of 84 (55%) cases by analysis of paired serum and cerebrospinal fluid (CSF) samples. None of the 87 immunocompetent TBE patients tested had detectable TBEV RNA in serum or CSF. In contrast, in two TBE patients without TBEV-specific antibodies, diagnosis could only be made by the detection of TBEV RNA in CSF. Both patients had previously been treated with the B cell-depleting antibody rituximab. Therefore, in patients with CNS infection and humoral immunodeficiency, it is necessary to include TBEV PCR in the diagnostic approach.
Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Humanos , Anticuerpos Antivirales , Encefalitis Transmitida por Garrapatas/diagnóstico , Encefalitis Transmitida por Garrapatas/epidemiología , Alemania/epidemiología , Inmunoglobulina M , ARNRESUMEN
The infection of human cytomegalovirus (HCMV) is strongly determined by the host-cell interaction in a way that the efficiency of HCMV lytic replication is dependent on the regulatory interplay between viral and cellular proteins. In particular, the activities of protein kinases, such as cyclin-dependent kinases (CDKs) and the viral CDK ortholog (vCDK/pUL97), play an important role in both viral reproduction and virus-host interaction. Very recently, we reported on the complexes formed between vCDK/pUL97, human cyclin H, and CDK7. Major hallmarks of this interplay are the interaction between cyclin H and vCDK/pUL97, which is consistently detectable across various conditions and host cell types of infection, the decrease or increase in pUL97 kinase activity resulting from cyclin H knock-down or elevated levels, respectively, and significant trans-stimulation of human CDK7 activity by pUL97 in vitro. Due to the fact that even a ternary complex of vCDK/pUL97-cyclin H-CDK7 can be detected by coimmunoprecipitation and visualized by bioinformatic structural modeling, we postulated a putative impact of the respective kinase activities on the patterns of transcription in HCMV-infected cells. Here, we undertook a first vCDK/pUL97-specific transcriptomic analysis, which combined conditions of fully lytic HCMV replication with those under specific vCDK/pUL97 or CDK7 drug-mediated inhibition or transient cyclin H knockout. The novel results were further strengthened using bioinformatic modeling of the involved multi-protein complexes. Our data underline the importance of these kinase activities for the C-terminal domain (CTD) phosphorylation-driven activation of host RNA polymerase in HCMV-infected cells. The impact of the individual experimental conditions on differentially expressed gene profiles is described in detail and discussed.
Asunto(s)
Ciclinas , Infecciones por Herpesviridae , Humanos , Ciclinas/metabolismo , Citomegalovirus/genética , Ciclina H/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , FosforilaciónRESUMEN
Neutralizing antibodies targeting HIV-1 Env have been shown to protect from systemic infection. To explore whether these antibodies can inhibit infection of the first cells, challenge viruses based on simian immunodeficiency virus (SIV) were developed that use HIV-1 Env for entry into target cells during the first replication cycle, but then switch to SIV Env usage. Antibodies binding to Env of HIV-1, but not SIV, block HIV-1 Env-mediated infection events after rectal exposure of non-human primates to the switching challenge virus. After natural exposure to HIV-1, such a reduction of the number of first infection events should be sufficient to provide sterilizing immunity in the strictest sense in most of the exposed individuals. Since blocking infection of the first cells avoids the formation of latently infected cells and reduces the risk of emergence of antibody-resistant mutants, it may be the best mode of protection.
Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Anticuerpos Antivirales , Macaca mulatta , Anticuerpos Neutralizantes , Anticuerpos Anti-VIHRESUMEN
IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several B cell malignancies and Kaposi's sarcoma. We analyzed the function of K8.1, the major antigenic component of the KSHV virion in the infection of different cells. To do this, we deleted K8.1 from the viral genome. It was found that K8.1 is critical for the infection of certain epithelial cells, e.g., a skin model cell line but not for infection of many other cells. K8.1 was found to mediate attachment of the virus to cells where it plays a role in infection. In contrast, we did not find K8.1 or a related protein from a closely related monkey virus to activate fusion of the viral and cellular membranes, at least not under the conditions tested. These findings suggest that K8.1 functions in a highly cell-specific manner during KSHV entry, playing a crucial role in the attachment of KSHV to, e.g., skin epithelial cells.
Asunto(s)
Glicoproteínas , Herpesvirus Humano 8 , Queratinocitos , Proteínas Virales , Acoplamiento Viral , Internalización del Virus , Humanos , Glicoproteínas/deficiencia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Queratinocitos/metabolismo , Queratinocitos/virología , Sarcoma de Kaposi/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Fusión de Membrana , Piel/citologíaRESUMEN
Most SARS-CoV-2 proteins are translated from subgenomic RNAs (sgRNAs). While the majority of these sgRNAs are monocistronic, some viral mRNAs encode more than one protein. One example is the ORF3a sgRNA that also encodes ORF3c, an enigmatic 41-amino-acid peptide. Here, we show that ORF3c is expressed in SARS-CoV-2-infected cells and suppresses RIG-I- and MDA5-mediated IFN-ß induction. ORF3c interacts with the signaling adaptor MAVS, induces its C-terminal cleavage, and inhibits the interaction of RIG-I with MAVS. The immunosuppressive activity of ORF3c is conserved among members of the subgenus sarbecovirus, including SARS-CoV and coronaviruses isolated from bats. Notably, however, the SARS-CoV-2 delta and kappa variants harbor premature stop codons in ORF3c, demonstrating that this reading frame is not essential for efficient viral replication in vivo and is likely compensated by other viral proteins. In agreement with this, disruption of ORF3c does not significantly affect SARS-CoV-2 replication in CaCo-2, CaLu-3, or Rhinolophus alcyone cells. In summary, we here identify ORF3c as an immune evasion factor of SARS-CoV-2 that suppresses innate sensing in infected cells.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Células CACO-2 , COVID-19/genética , Transducción de Señal , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Inmunidad Innata/genéticaRESUMEN
Human inherited disorders of interferon-gamma (IFN-γ) immunity underlie severe mycobacterial diseases. We report X-linked recessive MCTS1 deficiency in men with mycobacterial disease from kindreds of different ancestries (from China, Finland, Iran, and Saudi Arabia). Complete deficiency of this translation re-initiation factor impairs the translation of a subset of proteins, including the kinase JAK2 in all cell types tested, including T lymphocytes and phagocytes. JAK2 expression is sufficiently low to impair cellular responses to interleukin-23 (IL-23) and partially IL-12, but not other JAK2-dependent cytokines. Defective responses to IL-23 preferentially impair the production of IFN-γ by innate-like adaptive mucosal-associated invariant T cells (MAIT) and γδ T lymphocytes upon mycobacterial challenge. Surprisingly, the lack of MCTS1-dependent translation re-initiation and ribosome recycling seems to be otherwise physiologically redundant in these patients. These findings suggest that X-linked recessive human MCTS1 deficiency underlies isolated mycobacterial disease by impairing JAK2 translation in innate-like adaptive T lymphocytes, thereby impairing the IL-23-dependent induction of IFN-γ.
Asunto(s)
Interferón gamma , Janus Quinasa 2 , Infecciones por Mycobacterium , Humanos , Masculino , Proteínas de Ciclo Celular/metabolismo , Interferón gamma/inmunología , Interleucina-12 , Interleucina-23 , Janus Quinasa 2/metabolismo , Mycobacterium/fisiología , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/metabolismo , Proteínas Oncogénicas/metabolismoRESUMEN
Granzyme B (GZMB) is a key enzyme released by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells to induce apoptosis in target cells. We designed a novel fluorogenic biosensor which is able to assess GZMB activity in a specific and sensitive manner. This cleavage-responsive sensor for T cell activity level (CRSTAL) is based on a fluorescent protein that is only activated upon cleavage by GZMB or caspase-8. CRSTAL was tested in stable cell lines and demonstrated a strong and long-lasting fluorescence signal upon induction with GZMB. It can detect GZMB activity not only by overexpression of GZMB in target cells but also following transfer of GZMB and perforin from effector cells during cytotoxicity. This feature has significant implications for cancer immunotherapy, particularly in monitoring the efficacy of chimeric antigen receptor (CAR)-T cells. CAR-T cells are a promising therapy option for various cancer types, but monitoring their activity in vivo is challenging. The development of biosensors like CRSTAL provides a valuable tool for monitoring of CAR-T cell activity. In summary, CRSTAL is a highly sensitive biosensor that can detect GZMB activity in target cells, providing a means for evaluating the cytotoxic activity of immune cells and monitoring T cell activity in real time.
Asunto(s)
Apoptosis , Colorantes , Granzimas/genética , Línea Celular , Eritrocitos AnormalesRESUMEN
With the emergence of multiple predominant SARS-CoV-2 variants, it becomes important to have a comprehensive assessment of their viral fitness and transmissibility. Here, we demonstrate that natural temperature differences between the upper (33°C) and lower (37°C) respiratory tract have profound effects on SARS-CoV-2 replication and transmissibility. Specifically, SARS-CoV-2 variants containing the NSP12 mutations P323L or P323L/G671S exhibit enhanced RNA-dependent RNA polymerase (RdRp) activity at 33°C compared with 37°C and high transmissibility. Molecular dynamics simulations and microscale thermophoresis demonstrate that the NSP12 P323L and P323L/G671S mutations stabilize the NSP12-NSP7-NSP8 complex through hydrophobic effects, leading to increased viral RdRp activity. Furthermore, competitive transmissibility assay reveals that reverse genetic (RG)-P323L or RG-P323L/G671S NSP12 outcompetes RG-WT (wild-type) NSP12 for replication in the upper respiratory tract, allowing markedly rapid transmissibility. This suggests that NSP12 P323L or P323L/G671S mutation of SARS-CoV-2 is associated with increased RdRp complex stability and enzymatic activity, promoting efficient transmissibility.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , SARS-CoV-2/genética , Hurones , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/química , Mutación/genética , Replicación Viral/genéticaRESUMEN
Murine cytomegalovirus (MCMV), and, in particular, recombinant virus derived from MCMV-bacmid pSM3fr, is widely used as the small animal infection model for human cytomegalovirus (HCMV). We sequenced the complete genomes of MCMV strains and recombinants for quality control. However, we noticed deviances from the deposited reference sequences of MCMV-bacmid pSM3fr. This prompted us to re-analyze pSM3fr and reannotate the reference sequence, as well as that for the commonly used MCMV-m157luc reporter virus. A correct reference sequence for this frequently used pSM3fr, containing a repaired version of m129 (MCK-2) and the luciferase gene instead of ORF m157, was constructed. The new reference also contains the original bacmid sequence, and it has a hybrid origin from MCMV strains Smith and K181.
Asunto(s)
Muromegalovirus , Animales , Humanos , Ratones , Muromegalovirus/genética , Citomegalovirus/genética , Modelos Animales , Control de Calidad , Proteínas Virales , Quimiocinas CCRESUMEN
SARS-CoV-2, the causative agent of COVID-19, has spread around the world with more than 700 million cases and 6.8 million deaths. Various variants of concern (VoC) have emerged due to mutations and recombination and concurrent selection for increased viral fitness and immune evasion. The viral protein that primarily determines the pathogenicity, infectivity, and transmissibility is the Spike protein. To analyze the specific impact of variant Spike proteins on infection dynamics, we constructed SARS-CoV-2 with a uniform B.1 backbone but with alternative Spike proteins. In addition, ORF6 was replaced by EYFP as a biological safety measure, and for use of this well-established reporter. We show that namely the delta variant Spike proteins cause a distinct phenotype from the wild type (B.1, D614G) and other variants of concern. Furthermore, we demonstrate that the omicron BA.1 Spike results in lower viral loads and a less efficient spread in vitro. Finally, we utilized viruses with the two different reporters EYFP and mCherry to establish a competitive growth assay, demonstrating that most but not all Spike variant viruses were able to outcompete wild type SARS-CoV-2 B.1.
Asunto(s)
COVID-19 , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
Foamy viruses (FVs) are naturally found in many different animals and also in primates with the notable exception of humans, but zoonotic infections are common. In several species, two different envelope (env) gene sequence clades or genotypes exist. We constructed a simian FV (SFV) clone containing a reporter gene cassette. In this background, we compared the env genes of the SFVmmu-DPZ9524 (genotype 1) and of the SFVmmu_R289hybAGM (genotype 2) isolates. SFVmmu_R289hybAGM env-driven infection was largely resistant to neutralization by SFVmmu-DPZ9524-neutralizing sera. While SFVmmu_R289hybAGM env consistently effected higher infectivity and cell-cell fusion, we found no differences in the cell tropism conferred by either env across a range of different cells. Infection by both viruses was weakly and non-significantly enhanced by simultaneous knockout of interferon-induced transmembrane proteins (IFITMs) 1, 2, and 3 in A549 cells, irrespective of prior interferon stimulation. Infection was modestly reduced by recombinant overexpression of IFITM3, suggesting that the SFV entry step might be weakly restricted by IFITM3 under some conditions. Overall, our results suggest that the different env gene clades in macaque foamy viruses induce genotype-specific neutralizing antibodies without exhibiting overt differences in cell tropism, but individual env genes may differ significantly with regard to fitness.
Asunto(s)
Interferones , Spumavirus , Animales , Humanos , Fusión Celular , Genes env , Genotipo , Macaca , Proteínas de la Membrana/genética , Proteínas de Unión al ARN , Spumavirus/genética , Tropismo , Internalización del VirusRESUMEN
The SARS-CoV-2 Omicron variant is more immune evasive and less virulent than other major viral variants that have so far been recognized1-12. The Omicron spike (S) protein, which has an unusually large number of mutations, is considered to be the main driver of these phenotypes. Here we generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron (BA.1 lineage) in the backbone of an ancestral SARS-CoV-2 isolate, and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escaped vaccine-induced humoral immunity, mainly owing to mutations in the receptor-binding motif; however, unlike naturally occurring Omicron, it efficiently replicated in cell lines and primary-like distal lung cells. Similarly, in K18-hACE2 mice, although virus bearing Omicron S caused less severe disease than the ancestral virus, its virulence was not attenuated to the level of Omicron. Further investigation showed that mutating non-structural protein 6 (nsp6) in addition to the S protein was sufficient to recapitulate the attenuated phenotype of Omicron. This indicates that although the vaccine escape of Omicron is driven by mutations in S, the pathogenicity of Omicron is determined by mutations both in and outside of the S protein.
Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Factores de Virulencia , Virulencia , Animales , Ratones , Línea Celular , Evasión Inmune , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Humanos , Vacunas contra la COVID-19/inmunología , Pulmón/citología , Pulmón/virología , Replicación Viral , MutaciónRESUMEN
The recently identified, globally predominant SARS-CoV-2 Omicron variant (BA.1) is highly transmissible, even in fully vaccinated individuals, and causes attenuated disease compared with other major viral variants recognized to date. The Omicron spike (S) protein, with an unusually large number of mutations, is considered the major driver of these phenotypes. We generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron in the backbone of an ancestral SARS-CoV-2 isolate and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escapes vaccine-induced humoral immunity, mainly due to mutations in the receptor binding motif (RBM), yet unlike naturally occurring Omicron, efficiently replicates in cell lines and primary-like distal lung cells. In K18-hACE2 mice, while Omicron causes mild, non-fatal infection, the Omicron S-carrying virus inflicts severe disease with a mortality rate of 80%. This indicates that while the vaccine escape of Omicron is defined by mutations in S, major determinants of viral pathogenicity reside outside of S.
RESUMEN
DUX4 is a germline transcription factor and a master regulator of zygotic genome activation. During early embryogenesis, DUX4 is crucial for maternal to zygotic transition at the 2-8-cell stage in order to overcome silencing of genes and enable transcription from the zygotic genome. In adult somatic cells, DUX4 expression is silenced and its activation in adult muscle cells causes the genetic disorder Facioscapulohumeral Muscular Dystrophy (FSHD). Here we show that herpesviruses from alpha-, beta- and gamma-herpesvirus subfamilies as well as papillomaviruses actively induce DUX4 expression to promote viral transcription and replication. We demonstrate that HSV-1 immediate early proteins directly induce expression of DUX4 and its target genes including endogenous retroelements, which mimics zygotic genome activation. We further show that DUX4 directly binds to the viral genome and promotes viral transcription. DUX4 is functionally required for herpesvirus infection, since genetic depletion of DUX4 by CRISPR/Cas9 abrogates viral replication. Our results show that herpesviruses induce DUX4 expression and its downstream germline-specific genes and retroelements, thus mimicking an early embryonic-like transcriptional program that prevents epigenetic silencing of the viral genome and facilitates herpesviral gene expression.
RESUMEN
With the convergent global emergence of SARS-CoV-2 variants of concern (VOC), a precise comparison study of viral fitness and transmission characteristics is necessary for the prediction of dominant VOCs and the development of suitable countermeasures. While airway temperature plays important roles in the fitness and transmissibility of respiratory tract viruses, it has not been well studied with SARS-CoV-2. Here we demonstrate that natural temperature differences between the upper (33°C) and lower (37°C) respiratory tract have profound effects on SARS-CoV-2 replication and transmission. Specifically, SARS-COV-2 variants containing the P323L or P323L/G671S mutation in the NSP12 RNA-dependent RNA polymerase (RdRp) exhibited enhanced RdRp enzymatic activity at 33°C compared to 37°C and high transmissibility in ferrets. MicroScale Thermophoresis demonstrated that the NSP12 P323L or P323L/G671S mutation stabilized the NSP12-NSP7-NSP8 complex interaction. Furthermore, reverse genetics-derived SARS-CoV-2 variants containing the NSP12 P323L or P323L/G671S mutation displayed enhanced replication at 33°C, and high transmission in ferrets. This suggests that the evolutionarily forced NSP12 P323L and P323L/G671S mutations of recent SARS-CoV-2 VOC strains are associated with increases of the RdRp complex stability and enzymatic activity, promoting the high transmissibility.