Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 892, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110417

RESUMEN

A working group from the Global Library of Underwater Biological Sounds effort collaborated with the World Register of Marine Species (WoRMS) to create an inventory of species confirmed or expected to produce sound underwater. We used several existing inventories and additional literature searches to compile a dataset categorizing scientific knowledge of sonifery for 33,462 species and subspecies across marine mammals, other tetrapods, fishes, and invertebrates. We found 729 species documented as producing active and/or passive sounds under natural conditions, with another 21,911 species deemed likely to produce sounds based on evaluated taxonomic relationships. The dataset is available on both figshare and WoRMS where it can be regularly updated as new information becomes available. The data can also be integrated with other databases (e.g., SeaLifeBase, Global Biodiversity Information Facility) to advance future research on the distribution, evolution, ecology, management, and conservation of underwater soniferous species worldwide.


Asunto(s)
Biodiversidad , Ecología , Animales , Cetáceos , Peces , Sonido
2.
J Acoust Soc Am ; 154(4): 2305-2320, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37843381

RESUMEN

Fish vocalize in association with life functions with many species calling en masse to produce choruses. Monitoring the distribution and behavior of fish choruses provides high-resolution data on fish distribution, habitat use, spawning behavior, and in some circumstances, local abundance. The purpose of this study was to use long-term passive acoustic recordings to obtain a greater understanding of the patterns and drivers of Australian fish chorus diversity at a national scale. This study detected 133 fish choruses from year-long recordings taken at 29 Australian locations with the highest fish chorus diversity identified at a site in the country's northern, tropical waters. A linear model fitted with a generalized least squares regression identified geomorphic feature type, benthic substrate type, and northness (of slope) as explanatory variables of fish chorus diversity. Geomorphic feature type was identified as the significant driver of fish chorus diversity. These results align with broad-scale patterns reported previously in fish biodiversity, fish assemblages, and fish acoustic diversity. This study has highlighted that passive acoustic monitoring of fish chorus diversity has the potential to be used as an indicator of fish biodiversity and to highlight habitats of ecological importance.


Asunto(s)
Ecosistema , Peces , Animales , Australia , Biodiversidad , Acústica
3.
R Soc Open Sci ; 10(4): 220499, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37090960

RESUMEN

This study presents evidence of diel patterns in fin whale (Balaenoptera physalus) 20 Hz acoustic presence in Eastern Antarctic waters. Passive acoustic recordings were collected at four sites in Eastern Antarctica from 2013 to 2019. A generalized linear model fitted by a generalized estimating equation was used to test the hypothesis that fin whale 20 Hz acoustic presence shows significant variation between light regimes dawn, day, dusk and night. In the Indian sector of Antarctica, at the Prydz and Southern Kerguelen Plateau sites, fin whale acoustic presence was significantly more common during the night and dawn before declining during the day and dusk periods. A different diel pattern was observed in the Pacific sector, at the Dumont d'Urville site: fin whale acoustic presence was significantly more common during the day than dusk and night periods. No diel pattern was identified at the Casey site. The identified diel patterns in the Indian sector of Eastern Antarctica correlate with previously identified diel patterns of the fin whales' prey. We suggest an indirect association between fin whale acoustic presence and foraging, with the animals more likely to produce the 20 Hz pulse during the night when not foraging and less likely to vocalize when foraging during the day.

4.
Bioinspir Biomim ; 18(3)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36917857

RESUMEN

Rotational behaviour has been observed when dolphins track or detect targets, however, its role in echolocation is unknown. We used computed tomography data of one live and one recently deceased bottlenose dolphin, together with measurements of the acoustic properties of head tissues, to perform acoustic property reconstruction. The anatomical configuration and acoustic properties of the main forehead structures between the live and deceased dolphins were compared. Finite element analysis (FEA) was applied to simulate the generation and propagation of echolocation clicks, to compute their waveforms and spectra in both near- and far-fields, and to derive echolocation beam patterns. Modelling results from both the live and deceased dolphins were in good agreement with click recordings from other, live, echolocating individuals. FEA was also used to estimate the acoustic scene experienced by a dolphin rotating 180° about its longitudinal axis to detect fish in the far-field at elevation angles of -20° to 20°. The results suggest that the rotational behaviour provides a wider insonification area and a wider receiving area. Thus, it may provide compensation for the dolphin's relatively narrow biosonar beam, asymmetries in sound reception, and constraints on the pointing direction that are limited by head movement. The results also have implications for examining the accuracy of FEA in acoustic simulations using recently deceased specimens.


Asunto(s)
Delfín Mular , Ecolocación , Animales , Rotación , Acústica , Tomografía Computarizada por Rayos X , Vocalización Animal , Espectrografía del Sonido
5.
Animals (Basel) ; 12(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36552392

RESUMEN

The Risso's dolphin (Grampus griseus) has a distinctive vertical crease (or cleft) along the anterior surface of the forehead. Previous studies have speculated that the cleft may contribute to biosonar beam formation. To explore this, we constructed 2D finite element models based on computer tomography data of the head of a naturally deceased Risso's dolphin. The simulated acoustic near-field signals, far-field signals, and transmission beam patterns were compared to corresponding measurements from a live, echolocating Risso's dolphin. To investigate the effect of the cleft, we filled the cleft with neighboring soft tissues in our model, creating a hypothetical "cleftless" forehead, as found in other odontocetes. We compared the acoustic pressure field and the beam pattern between the clefted and cleftless cases. Our results suggest that the cleft plays an insignificant role in forehead biosonar sound propagation and far-field beam formation. Furthermore, the cleft was not responsible for the bimodal click spectrum recorded and reported from this species.

6.
Science ; 377(6602): 157-158, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35857571

RESUMEN

Potential harm is understudied and largely overlooked.


Asunto(s)
Conservación de los Recursos Naturales , Minería , Ruido , Ecosistema , Ruido/prevención & control , Océanos y Mares
7.
Science ; 371(6529)2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33542110

RESUMEN

Oceans have become substantially noisier since the Industrial Revolution. Shipping, resource exploration, and infrastructure development have increased the anthrophony (sounds generated by human activities), whereas the biophony (sounds of biological origin) has been reduced by hunting, fishing, and habitat degradation. Climate change is affecting geophony (abiotic, natural sounds). Existing evidence shows that anthrophony affects marine animals at multiple levels, including their behavior, physiology, and, in extreme cases, survival. This should prompt management actions to deploy existing solutions to reduce noise levels in the ocean, thereby allowing marine animals to reestablish their use of ocean sound as a central ecological trait in a healthy ocean.


Asunto(s)
Organismos Acuáticos/fisiología , Audición , Ruido , Animales , Océanos y Mares
8.
Sci Rep ; 10(1): 20609, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244014

RESUMEN

While in the northern hemisphere, many studies have been conducted on the vocal repertoire of long-finned pilot whales (Globicephala melas), no such study has been conducted in the southern hemisphere. Presented here, is the first study on the vocalisations of long-finned pilot whales along the southern coast of mainland Australia. Multiple measures were taken of 2028 vocalisations recorded over five years in several locations. These vocalisations included tonal sounds with and without overtones, sounds of burst-pulse character, graded sounds, biphonations, and calls of multiple components. Vocalisations were further categorised based on spectrographic features into 18 contour classes. Altogether, vocalisations ranged from approximately 200 Hz to 25 kHz in fundamental frequency and from 0.03 s to 2.07 s in duration. These measures compared well with those from northern hemisphere pilot whales. Some call types were almost identical to northern hemisphere vocalisations, even though the geographic ranges of the two populations are far apart. Other call types were unique to Australia. Striking similarities with calls of short-finned pilot whales (Globicephala macrorhynchus) and sometimes sympatric killer whales (Orcinus orca) were also found. Theories for call convergence and divergence are discussed.


Asunto(s)
Vocalización Animal , Calderón/fisiología , Animales , Australia , Sonido , Conducta Estereotipada
9.
J Acoust Soc Am ; 148(2): 934, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32873007

RESUMEN

The effects of anthropogenic (man-made) underwater sound on aquatic life have become an important environmental issue. One of the focal ways to present and to share knowledge on the topic has been the international conference on The Effects of Noise on Aquatic Life ("Aquatic Noise"). The conferences have brought together people from diverse interests and backgrounds to share information and ideas directed at understanding and solving the challenges of the potential effects of sound on aquatic life. The papers published here and in a related special issue of Proceedings of Meetings on Acoustics present a good overview of the many topics and ideas covered at the meeting. Indeed, the growth in studies on anthropogenic sound since the first meeting in 2007 reflects the increasing use of oceans, lakes, rivers, and other waterways by humans. However, there are still very substantial knowledge gaps about the effects of sound on all aquatic animals, and these gaps lead to there being a substantial need for a better understanding of the sounds produced by various sources and how these sounds may affect animals.


Asunto(s)
Acústica , Sonido , Animales , Humanos , Ruido/efectos adversos , Ríos , Espectrografía del Sonido
10.
J Acoust Soc Am ; 147(5): 3575, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32486766

RESUMEN

Concern over the impacts of anthropogenic noise on aquatic fauna is increasing, as is the number of vessels in the world's oceans, lakes, and rivers. Sound signatures of different vessel types are increasingly characterized, yet few reports are available on solar-electric powered vessels. Such data are important to model the sound levels experienced by marine fauna and their potential impacts. Sounds from two vessel types were recorded in the shallow waters of the Swan River, Western Australia, using bottom-mounted OceanInstruments SoundTraps. Multiple passes from two 10-m solar-electric powered passenger ferries and, for comparison, two 25-m conventionally powered (inboard diesel engine) passenger ferries were selected. Analysis was conducted on 58 and 16 passes by the electric ferries (in 2016 and 2017-2018, respectively) and 10 and 14 passes by the conventional ferry (2016 and 2017-2018, respectively) at 5-m range. At 55-m range, analysis was conducted on 17 and 1 passes by the electric ferry (2016 and 2017-2018, respectively) and 9 and 3 passes of the conventional ferry (2016 and 2017-2018, respectively). Measured received levels and modeled sound propagation were then used to estimate monopole source levels (MSL) and radiated noise levels (RNL). At 55-m range, the conventionally powered ferry type produced 156 and 157 dB re 1 µPa2m2 MSL and RNL, respectively, while the same metrics for the electric ferry were 12 dB lower. At frequencies below 500 Hz, spectral levels of the electric ferry at a range of <5 m were 10-25 dB lower than those of the conventional ferry, implying a potential benefit for animals that use low-frequency communication, if electric motors replaced petrol or diesel engines.

11.
J Acoust Soc Am ; 147(5): 3078, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32486822

RESUMEN

Automatically detecting animal signals in soundscape recordings is of benefit to passive acoustic monitoring programs which may be undertaken for research or conservation. Numerous algorithms exist, which are typically optimized for certain situations (i.e., certain animal sound types and ambient noise conditions). Adding to the library of algorithms, this paper developed, tested, and compared three detectors for Omura's whale vocalizations (15-62 Hz; <15 s) in marine soundscape recordings which contained noise from other animals, wind, earthquakes, ships, and seismic surveys. All three detectors were based on processing of spectrographic representations. The specific methods were spectrogram cross-correlation, entropy computation, and spectral intensity "blob" tracing. The latter two were general-purpose detectors that were adapted for detection of Omura's whale vocalizations. Detector complexity and post-processing effort varied across the three detectors. Performance was assessed qualitatively using demonstrative examples, and quantitatively using Receiver-Operating Characteristics and Precision-Recall curves. While the results of quantitative assessment were dominated by the spectrogram cross-correlation method, qualitative assessment showed that all three detectors offered promising performance.


Asunto(s)
Balaenoptera , Acústica , Animales , Cetáceos , Ruido , Sonido , Espectrografía del Sonido , Vocalización Animal
12.
R Soc Open Sci ; 7(2): 191228, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32257307

RESUMEN

Killer whales (Orcinus orca) are top marine predators occurring globally. In Antarctic waters, five ecotypes have been described, with Type C being the smallest form of killer whale known. Acoustic recordings of nine encounters of Type C killer whales were collected in 2012 and 2013 in McMurdo Sound, Ross Sea. In a combined 3.5 h of recordings, 6386 killer whale vocalizations were detected and graded based on their signal-to-noise ratio. Spectrograms of the highest-quality calls were examined for characteristic patterns yielding a catalogue of 28 call types (comprising 1250 calls). Acoustic parameters of each call were measured and summarized by call type. Type C killer whales produced complex calls, consisting of multiple frequency-modulated, amplitude-modulated and pulsed components. Often, two components occurred simultaneously, forming a biphonation; although the biphonic components did not necessarily start and end together, with one component lasting over several others. The addition and deletion of components yielded call subtypes. Call complexity appears stable over time and may be related to feeding ecology. Characterization of the Type C acoustic repertoire is an important step for the development of passive acoustic monitoring of the diverse assemblage of killer whale ecotypes in Antarctica's rapidly changing marine ecosystems.

13.
Mar Pollut Bull ; 137: 656-661, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30503480

RESUMEN

The effects of underwater noise pollution on marine life are of increasing concern. Research and management have focussed on the strongest underwater sound sources. Aerial sound sources have understandably been ignored as sound transmits poorly across the air-water interface. However, there might be situations when air-borne noise cannot be dismissed. Commercial passenger airplanes were recorded in a coastal underwater soundscape exhibiting broadband received levels of 84-132 dB re 1 µPa rms. Power spectral density levels of airplane noise underwater exceeded ambient levels between 12 Hz and 2 or 10 kHz (depending on site) by up to 36 dB. Underwater noise from airplanes is expected to be audible to a variety of marine fauna, including seals, manatees, and dolphins. With many of the world's airports lying close to the coast, it is cautioned that airplane noise not be ignored, in particular in the case of at-risk species in small, confined habitats.


Asunto(s)
Aeronaves , Ruido , Océanos y Mares , Animales , Ecosistema , Phocidae , Sonido
14.
Sci Rep ; 7(1): 17459, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29234024

RESUMEN

The coral reefs surrounding Lizard Island in the Great Barrier Reef have a diverse soundscape that contains an array of bioacoustic phenomena, notably choruses produced by fishes. Six fish choruses identified around Lizard Island exhibited distinctive spatial and temporal patterns from 2014 to 2016. Several choruses displayed site fidelity, indicating that particular sites may represent important habitat for fish species, such as fish spawning aggregations sites. The choruses displayed a broad range of periodicities, from diel to annual, which provides new insights into the ecology of vocalising reef fish species and the surrounding ecosystem. All choruses were affected by one or more environmental variables including temperature and moonlight, the latter of which had a significant influence on the timing and received sound levels. These findings highlight the utility of passive acoustic tools for long-term monitoring and management of coral reefs, which is highly relevant in light of recent global disturbance events, particularly coral bleaching.


Asunto(s)
Arrecifes de Coral , Peces , Vocalización Animal , Animales , Australia , Luz , Luna , Océanos y Mares , Periodicidad , Reproducción , Análisis Espacio-Temporal , Temperatura
15.
J Acoust Soc Am ; 142(3): EL281, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28964046

RESUMEN

Geotechnical site investigations prior to marine construction typically involve shallow, small-core drilling and standard penetration testing (SPT), during which a small tube is hammered into the ground at the bottom of the borehole. Drilling (120 kW, 83 mm diameter drillbit, 1500 rpm, 16-17 m drill depth in sand and mudstone) and SPT (50 mm diameter test tube, 15 mm wall thickness, 100 kg hammer, 1 m drop height) by a jack-up rig in 7-13 m of water were recorded with a drifting hydrophone at 10-50 m range. Source levels were 142-145 dB re 1 µPa rms @ 1 m (30-2000 Hz) for drilling and 151-160 dB re 1 µPa2s @ 1 m (20-24 000 Hz) for SPT.

16.
Sci Rep ; 7(1): 13437, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044128

RESUMEN

ABSTARCT: The potential disturbance of dolphins from tourism boats has been widely discussed in the literature, in terms of both physical vessel presence and associated underwater noise. However, less attention has been paid to the potential impact of non-tourism vessels, despite these being much more widespread and occurring in greater numbers throughout coastal dolphin habitats. The Indo-Pacific bottlenose dolphin (T. aduncus) community using the Fremantle Inner Harbour, Western Australia, is exposed to high levels of vessel traffic. To investigate whether behavioural responses could be occurring, a non-invasive combination of visual and acoustic monitoring was conducted using a theodolite and an autonomous acoustic logger. Dolphins significantly increased their average movement speeds in high vessel densities, but only for some activity states. Behavioural budgets also changed in the presence of vessels, with animals spending greater time travelling and less time resting or socialising. Finally, multiple whistle characteristics varied with rising levels of broadband noise, and other contextual variables. Despite being acoustically specialised for higher frequencies, dolphins had the strongest acoustic variation during low-frequency noise. This study highlights the complexity of disturbance responses in this species, confirming the need for consideration of both surface and acoustic behaviour alongside appropriate contextual data.


Asunto(s)
Delfín Mular/fisiología , Ruido del Transporte/efectos adversos , Vocalización Animal , Animales , Estuarios , Locomoción , Navíos
17.
Sci Data ; 4: 170126, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28895948

RESUMEN

Dolphins use frequency-modulated whistles for a variety of social functions. Whistles vary in their characteristics according to context, such as activity state, group size, group composition, geographic location, and ambient noise levels. Therefore, comparison of whistle characteristics can be used to address numerous research questions regarding dolphin populations and behaviour. However, logistical and economic constraints on dolphin research have resulted in data collection biases, inconsistent analytical approaches, and knowledge gaps. This Data Descriptor presents an acoustic dataset of bottlenose dolphin (Tursiops aduncus) whistles recorded in the Fremantle Inner Harbour, Western Australia. Data were collected using an autonomous recorder and analysed using a range of acoustic measurements. Acoustic data review identified 336 whistles, which were subsequently measured for six key characteristics using Raven Pro software. Of these, 164 'high-quality' whistles were manually measured to provide an additional five acoustic characteristics. Digital files of individual whistles and corresponding measurements make this dataset available to researchers to address future questions regarding variations within and between dolphin communities.


Asunto(s)
Delfín Mular , Vocalización Animal , Animales , Australia Occidental
18.
PLoS One ; 11(12): e0166670, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27923044

RESUMEN

Observations of killer whales (Orcinus orca) feeding on the remains of beaked whales have been previously documented; however, to date, there has been no published account of killer whales actively preying upon beaked whales. This article describes the first field observations of killer whales interacting with, hunting and preying upon beaked whales (Mesoplodon spp.) on four separate occasions during 2014, 2015 and 2016 in the Bremer Sub-Basin, off the south coast of Western Australia.


Asunto(s)
Conducta Predatoria , Orca/fisiología , Animales , Conducta Alimentaria , Australia Occidental , Ballenas
19.
J Acoust Soc Am ; 139(6): EL223, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27369176

RESUMEN

Underwater sound of rigid-hulled inflatable boats was recorded 142 times in total, over 3 sites: 2 in southern British Columbia, Canada, and 1 off Western Australia. Underwater sound peaked between 70 and 400 Hz, exhibiting strong tones in this frequency range related to engine and propeller rotation. Sound propagation models were applied to compute monopole source levels, with the source assumed 1 m below the sea surface. Broadband source levels (10-48 000 Hz) increased from 134 to 171 dB re 1 µPa @ 1 m with speed from 3 to 16 m/s (10-56 km/h). Source power spectral density percentile levels and 1/3 octave band levels are given for use in predictive modeling of underwater sound of these boats as part of environmental impact assessments.

20.
Adv Exp Med Biol ; 875: 265-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26610968

RESUMEN

The study of marine soundscapes is becoming widespread and the amount of data collected is increasing rapidly. Data owners (typically academia, industry, government, and defense) are negotiating data sharing and generating potential for data syntheses, comparative studies, analyses of trends, and large-scale and long-term acoustic ecology research. A problem is the lack of standards and commonly agreed protocols for the recording of marine soundscapes, data analysis, and reporting that make a synthesis and comparison of results difficult. We provide a brief overview of the components in a marine soundscape, the hard- and software tools for recording and analyzing marine soundscapes, and common reporting formats.


Asunto(s)
Acústica , Agua de Mar , Sonido , Animales , Espectrografía del Sonido , Grabación en Cinta , Australia Occidental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...