Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccine ; 41(10): 1657-1667, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746739

RESUMEN

BACKGROUND: Inactivated trivalent poliovirus vaccine (IPV) induces humoral immunity, which protects against paralytic poliomyelitis but does not induce sufficient mucosal immunity to block intestinal infection. We assessed the intestinal immunity in healthy adults in Belgium conferred by a co-formulation of IPV with the mucosal adjuvant double mutant Labile Toxin (dmLT) derived from Escherichia coli. METHODS: Healthy fully IPV-vaccinated 18-45-year-olds were randomly allocated to three groups: on Day 1 two groups received one full dose of IPV (n = 30) or IPV + dmLT (n = 30) in a blinded manner, and the third received an open-label dose of bivalent live oral polio vaccine (bOPV types 1 and 3, n = 20). All groups received a challenge dose of bOPV on Day 29. Participants reported solicited and unsolicited adverse events (AE) using study diaries. Mucosal immune responses were measured by fecal neutralization and IgA on Days 29 and 43, with fecal shedding of challenge viruses measured for 28 days. Humoral responses were measured by serum neutralizing antibody (NAb). RESULTS: Solicited and unsolicited AEs were mainly mild-to-moderate and transient in all groups, with no meaningful differences in rates between groups. Fecal shedding of challenge viruses in both IPV groups exceeded that of the bOPV group but was not different between IPV and IPV + dmLT groups. High serum NAb responses were observed in both IPV groups, alongside modest levels of fecal neutralization and IgA. CONCLUSIONS: Addition of dmLT to IPV administered intramuscularly neither affected humoral nor intestinal immunity nor decreased fecal virus shedding following bOPV challenge. The tolerability of the dose of dmLT used in this study may allow higher doses to be investigated for impact on mucosal immunity. Registered on ClinicalTrials.gov - NCT04232943.


Asunto(s)
Poliomielitis , Vacuna Antipolio de Virus Inactivados , Humanos , Adulto , Poliomielitis/prevención & control , Calor , Vacuna Antipolio Oral , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Inmunoglobulina A
2.
PLoS Negl Trop Dis ; 15(11): e0009969, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34793441

RESUMEN

Cholera remains a major cause of infectious diarrhea globally. Despite the increased availability of cholera vaccines, there is still an urgent need for other effective interventions to reduce morbidity and mortality. Furthermore, increased prevalence of antibiotic-resistant Vibrio cholerae threatens the use of many drugs commonly used to treat cholera. We developed iOWH032, a synthetic small molecule inhibitor of the cystic fibrosis transmembrane conductance regulator chloride channel, as an antisecretory, host-directed therapeutic for cholera. In the study reported here, we tested iOWH032 in a Phase 2a cholera controlled human infection model. Forty-seven subjects were experimentally infected with V. cholerae El Tor Inaba strain N16961 in an inpatient setting and randomized to receive 500 mg iOWH032 or placebo by mouth every 8 hours for 3 days to determine the safety and efficacy of the compound as a potential treatment for cholera. We found that iOWH032 was generally safe and achieved a mean (± standard deviation) plasma level of 4,270 ng/mL (±2,170) after 3 days of oral dosing. However, the median (95% confidence interval) diarrheal stool output rate for the iOWH032 group was 25.4 mL/hour (8.9, 58.3), compared to 32.6 mL/hour (15.8, 48.2) for the placebo group, a reduction of 23%, which was not statistically significant. There was also no significant decrease in diarrhea severity and number or frequency of stools associated with iOWH032 treatment. We conclude that iOWH032 does not merit future development for treatment of cholera and offer lessons learned for others developing antisecretory therapeutic candidates that seek to demonstrate proof of principle in a cholera controlled human infection model study. Trial registration: This study is registered with ClinicalTrials.gov as NCT04150250.


Asunto(s)
Cólera/tratamiento farmacológico , Diarrea/tratamiento farmacológico , Hidroxiquinolinas/administración & dosificación , Oxadiazoles/administración & dosificación , Administración Oral , Adolescente , Adulto , Cólera/metabolismo , Cólera/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Diarrea/metabolismo , Diarrea/microbiología , Método Doble Ciego , Femenino , Humanos , Hidroxiquinolinas/efectos adversos , Masculino , Oxadiazoles/efectos adversos , Vibrio cholerae/fisiología , Adulto Joven
3.
Vaccine ; 39(39): 5548-5556, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34419306

RESUMEN

INTRODUCTION: Enterotoxigenic Escherichia coli (ETEC) is a common cause of infectious diarrhoea and a leading cause of morbidity and mortality in children living in resource-limited settings. It is also the leading cause of travellers' diarrhoea among civilian and military travellers. Its dual importance in global public health and travel medicine highlights the need for an effective vaccine. ETEC express colonization factors (CFs) that mediate adherence to the small intestine. An epidemiologically prevalent CF is coli surface antigen 6 (CS6). We assessed the safety and immunogenicity of a CS6-targeted candidate vaccine, CssBA, co-administered intramuscularly with the double-mutant heat-labile enterotoxin, dmLT [LT(R192G/L211A)]. METHODS: This was an open-label trial. Fifty subjects received three intramuscular injections (Days 1, 22 and 43) of CssBA alone (5 µg), dmLT alone (0.1 µg) or CssBA (5, 15, 45 µg) + dmLT (0.1 and 0.5 µg). Subjects were actively monitored for adverse events for 28 days following the third vaccination. Antibody responses (IgG and IgA) were characterized in the serum and from lymphocyte supernatants (ALS) to CS6 and the native ETEC heat labile enterotoxin, LT. RESULTS: Across all dose cohorts, the vaccine was safe and well-tolerated with no vaccine-related severe or serious adverse events. Among vaccine-related adverse events, a majority (98%) were mild with 79% being short-lived vaccine site reactions. Robust antibody responses were induced in a dose-dependent manner with a clear dmLT adjuvant effect. Response rates in subjects receiving 45 µg CssBA and 0.5 µg dmLT ranged from 50 to 100% across assays. CONCLUSION: This is the first study to demonstrate the safety and immunogenicity of CssBA and/or dmLT administered intramuscularly. Co-administration of the two components induced robust immune responses to CS6 and LT, paving the way for future studies to evaluate the efficacy of this vaccine target and development of a multivalent, subunit ETEC vaccine.


Asunto(s)
Toxinas Bacterianas , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Vacunas contra Escherichia coli , Anticuerpos Antibacterianos , Niño , Enterotoxinas , Infecciones por Escherichia coli/prevención & control , Proteínas de Escherichia coli/genética , Vacunas contra Escherichia coli/efectos adversos , Calor , Humanos , Vacunas de Subunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...