Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO J ; 43(13): 2685-2714, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831123

RESUMEN

Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.


Asunto(s)
Proteínas Cromosómicas no Histona , Heterocromatina , Histonas , Animales , Histonas/metabolismo , Histonas/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Metilación , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Homólogo de la Proteína Chromobox 5 , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Genoma de los Insectos , Desarrollo Embrionario/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética
2.
Sci Adv ; 9(3): eadd6982, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662865

RESUMEN

Mitotic perturbations activate the spindle assembly checkpoint (SAC) that keeps cells in prometaphase with high CDK1 activity. Prolonged mitotic arrest is eventually bypassed by gradual cyclin B decline followed by slippage of cells into G1 without chromosome segregation, a process that promotes cell transformation and drug resistance. Hitherto, the cyclin B1 decay is exclusively defined by mechanisms that involve its proteasomal degradation. Here, we report that hyperphosphorylated HIPK2 kinase accumulates in mitotic cells and phosphorylates the Rett syndrome protein MeCP2 at Ser92, a regulation that is counteracted by CDC14B phosphatase. MeCP2S92 phosphorylation leads to the enhanced translation of cyclin B1, which is important for cells with persistent SAC activation to counteract the proteolytic decline of cyclin B1 and therefore to suspend mitotic slippage. Hence, the HIPK2/CDC14B-MeCP2 axis functions as an enhancer of the SAC-induced mitotic block. Collectively, our study revises the prevailing view of how cells confer a sustainable SAC.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Mitosis , Puntos de Control del Ciclo Celular , Ciclina B1/genética , Ciclina B1/metabolismo , Fosforilación , Fosfatasas de Especificidad Dual/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Portadoras/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo
3.
J Cell Sci ; 134(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34328180

RESUMEN

Centrosomes are important microtubule-organizing centers (MTOC) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) have been described in many cell types. The functional analogs of centrosomes in fungi are the spindle pole bodies (SPBs). In Aspergillus nidulans, additional MTOCs have been discovered at septa (sMTOC). Although the core components are conserved in both MTOCs, their composition and organization are different and dynamic. Here, we show that the polo-like kinase PlkA binds the γ-tubulin ring complex (γ-TuRC) receptor protein ApsB and contributes to targeting ApsB to both MTOCs. PlkA coordinates the activities of the SPB outer plaque and the sMTOC. PlkA kinase activity was required for astral MT formation involving ApsB recruitment. PlkA also interacted with the γ-TuRC inner plaque receptor protein PcpA. Mitosis was delayed without PlkA, and the PlkA protein was required for proper mitotic spindle morphology, although this function was independent of its catalytic activity. Our results suggest that the polo-like kinase is a regulator of MTOC activities and acts as a scaffolding unit through interaction with γ-TuRC receptors.


Asunto(s)
Aspergillus nidulans , Centro Organizador de los Microtúbulos , Animales , Aspergillus nidulans/genética , Centrosoma , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Huso Acromático , Cuerpos Polares del Huso , Tubulina (Proteína)
4.
Genome Med ; 12(1): 46, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32450911

RESUMEN

BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid disease characterized by the early onset of age-related phenotypes including arthritis, loss of body fat and hair, and atherosclerosis. Cells from affected individuals express a mutant version of the nuclear envelope protein lamin A (termed progerin) and have previously been shown to exhibit prominent histone modification changes. METHODS: Here, we analyze the possibility that epigenetic deregulation of lamina-associated domains (LADs) is involved in the molecular pathology of HGPS. To do so, we studied chromatin accessibility (Assay for Transposase-accessible Chromatin (ATAC)-see/-seq), DNA methylation profiles (Infinium MethylationEPIC BeadChips), and transcriptomes (RNA-seq) of nine primary HGPS fibroblast cell lines and six additional controls, two parental and four age-matched healthy fibroblast cell lines. RESULTS: Our ATAC-see/-seq data demonstrate that primary dermal fibroblasts from HGPS patients exhibit chromatin accessibility changes that are enriched in LADs. Infinium MethylationEPIC BeadChip profiling further reveals that DNA methylation alterations observed in HGPS fibroblasts are similarly enriched in LADs and different from those occurring during healthy aging and Werner syndrome (WS), another premature aging disease. Moreover, HGPS patients can be stratified into two different subgroups according to their DNA methylation profiles. Finally, we show that the epigenetic deregulation of LADs is associated with HGPS-specific gene expression changes. CONCLUSIONS: Taken together, our results strongly implicate epigenetic deregulation of LADs as an important and previously unrecognized feature of HGPS, which contributes to disease-specific gene expression. Therefore, they not only add a new layer to the study of epigenetic changes in the progeroid syndrome, but also advance our understanding of the disease's pathology at the cellular level.


Asunto(s)
Lamina Tipo A/genética , Progeria/genética , Línea Celular , Metilación de ADN , Epigénesis Genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Dominios Proteicos
5.
J Mol Biol ; 432(15): 4257-4269, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32247764

RESUMEN

The most fundamental region of the chromosome for maintaining accurate genome segregation and stability is the centromeric chromatin [1,2]. In this review, we will focus on centromere-derived RNAs (cenRNAs), a crucial component of centromere structure first identified over 40 years ago [3] but only recently investigated in detail. Indeed, centromeric transcription is necessary for the proper formation of CENP-A-containing centromeric chromatin (cen-chromatin) [4-7] and for the formation of pericentromeric heterochromatin [8,9], and the transcripts play a role in the structure and function of the centromere-kinetochore interface [3,7,10]. Furthermore, cenRNA overexpression has been observed in some cancer patients [11-13] and has been shown to drive the formation of breast cancer in a mouse model system [14]. Together, these observations call for a more detailed appraisal of the composition, regulation and function of cenRNAs. In this review, we will first discuss the difficulties underlying the study of cenRNAs, then we identify different domains within the centromeric chromatin before we discuss the role of cenRNAs in the context of these domains.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/genética , ARN/metabolismo , Animales , Proteína A Centromérica/genética , Inestabilidad Genómica , Humanos , Transcripción Genética
6.
EMBO J ; 39(3): e104154, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31919860

RESUMEN

The cellular response to heat shock requires massive adaptation of gene expression driven by the transcription factor HSF1, which assembles in nuclear stress bodies together with human satellite III RNA and numerous splicing factors. In this issue of The EMBO Journal, Ninomiya et al demonstrate that nuclear stress bodies serve as a platform for phosphorylation of the SR protein SRSF9 by the CLK1 kinase, which promotes retention of a large number of introns during the recovery phase from heat shock.


Asunto(s)
ARN Largo no Codificante , Respuesta al Choque Térmico , Humanos , Intrones , Fosforilación , Factores de Transcripción
7.
Nucleic Acids Res ; 47(22): 11589-11608, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31713634

RESUMEN

Centromere function requires the presence of the histone H3 variant CENP-A in most eukaryotes. The precise localization and protein amount of CENP-A are crucial for correct chromosome segregation, and misregulation can lead to aneuploidy. To characterize the loading of CENP-A to non-centromeric chromatin, we utilized different truncation- and localization-deficient CENP-A mutant constructs in Drosophila melanogaster cultured cells, and show that the N-terminus of Drosophila melanogaster CENP-A is required for nuclear localization and protein stability, and that CENP-A associated proteins, rather than CENP-A itself, determine its localization. Co-expression of mutant CENP-A with its loading factor CAL1 leads to exclusive centromere loading of CENP-A whereas co-expression with the histone-binding protein RbAp48 leads to exclusive non-centromeric CENP-A incorporation. Mass spectrometry analysis of non-centromeric CENP-A interacting partners identified the RbAp48-containing NuRD chromatin remodeling complex. Further analysis confirmed that NuRD is required for ectopic CENP-A incorporation, and RbAp48 and MTA1-like subunits of NuRD together with the N-terminal tail of CENP-A mediate the interaction. In summary, our data show that Drosophila CENP-A has no intrinsic specificity for centromeric chromatin and utilizes separate loading mechanisms for its incorporation into centromeric and ectopic sites. This suggests that the specific association and availability of CENP-A interacting factors are the major determinants of CENP-A loading specificity.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Proteínas de Drosophila/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Animales , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster , Dominios Proteicos , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Transactivadores/metabolismo
8.
PLoS Genet ; 15(9): e1008380, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31553715

RESUMEN

A defining feature of centromeres is the presence of the histone H3 variant CENP-A that replaces H3 in a subset of centromeric nucleosomes. In Drosophila cultured cells CENP-A deposition at centromeres takes place during the metaphase stage of the cell cycle and strictly depends on the presence of its specific chaperone CAL1. How CENP-A loading is restricted to mitosis is unknown. We found that overexpression of CAL1 is associated with increased CENP-A levels at centromeres and uncouples CENP-A loading from mitosis. Moreover, CENP-A levels inversely correlate with mitosis duration suggesting crosstalk of CENP-A loading with the regulatory machinery of mitosis. Mitosis length is influenced by the spindle assembly checkpoint (SAC), and we found that CAL1 interacts with the SAC protein and RZZ complex component Zw10 and thus constitutes the anchor for the recruitment of RZZ. Therefore, CAL1 controls CENP-A incorporation at centromeres both quantitatively and temporally, connecting it to the SAC to ensure mitotic fidelity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteína A Centromérica/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/citología , Animales , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Histonas/metabolismo , Cinetocoros/metabolismo , Mitosis
9.
EMBO Rep ; 20(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538118

RESUMEN

The G2/M checkpoint coordinates DNA replication with mitosis and thereby prevents chromosome segregation in the presence of unreplicated or damaged DNA Here, we show that the RNA-binding protein TIAR is essential for the G2/M checkpoint and that TIAR accumulates in nuclear foci in late G2 and prophase in cells suffering from replication stress. These foci, which we named G2/M transition granules (GMGs), occur at low levels in normally cycling cells and are strongly induced by replication stress. In addition to replication stress response proteins, GMGs contain factors involved in RNA metabolism as well as CDK1. Depletion of TIAR accelerates mitotic entry and leads to chromosomal instability in response to replication stress, in a manner that can be alleviated by the concomitant depletion of Cdc25B or inhibition of CDK1. Since TIAR retains CDK1 in GMGs and attenuates CDK1 activity, we propose that the assembly of GMGs may represent a so far unrecognized mechanism that contributes to the activation of the G2/M checkpoint in mammalian cells.


Asunto(s)
Proteína Quinasa CDC2/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Proteínas de Unión al ARN/genética , Fosfatasas cdc25/genética , Ciclo Celular/genética , Segregación Cromosómica/genética , Daño del ADN/genética , Replicación del ADN/genética , Células HeLa , Humanos , Mitosis/genética , Fosforilación
10.
Cell Rep ; 22(8): 1982-1993, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29466727

RESUMEN

Stem cells of the Drosophila midgut (ISCs) are the only mitotically dividing cells of the epithelium and, therefore, presumably the only epithelial cells that require functional kinetochores for microtubule spindle attachment during mitosis. The histone variant CENP-A marks centromeric chromatin as the site of kinetochore formation and spindle attachment during mitotic chromosome segregation. Here, we show that centromeric proteins distribute asymmetrically during ISC division. Whereas newly synthesized CENP-A is enriched in differentiating progeny, CENP-C is undetectable in these cells. Remarkably, CENP-A persists in ISCs for weeks without being replaced, consistent with it being an epigenetic mark responsible for maintaining stem cell properties. Furthermore, CENP-A and its loading factor CAL1 were found to be essential for post-mitotic, differentiating cells; removal of any of these factors interferes with endoreduplication. Taken together, we propose two additional roles of CENP-A: to maintain stem cell-unique properties and to regulate post-mitotic cells.


Asunto(s)
Diferenciación Celular , Centrómero/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Células Madre/metabolismo , Animales , Proliferación Celular , Proteína A Centromérica , Sistema Digestivo/citología , Sistema Digestivo/metabolismo , Proteínas de Drosophila , Endorreduplicación , Cinetocoros/metabolismo , Mitosis , Glándulas Salivales/citología , Glándulas Salivales/metabolismo , Células Madre/citología
11.
Prog Mol Subcell Biol ; 56: 213-231, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28840239

RESUMEN

Regulation of chromatin structures is important for the control of DNA processes such as gene expression, and misregulation of chromatin is implicated in diverse diseases. Covalent post-translational modifications of histones are a prominent way to regulate chromatin structure and different chromatin regions bear their specific signature of histone modifications. The composition of centromeric chromatin is significantly different from other chromatin structures and mainly defined by the presence of the histone H3-variant CENP-A. Here we summarize the composition of centromeric chromatin and what we know about its differential regulation by post-translational modifications.


Asunto(s)
Centrómero/metabolismo , Cromatina/metabolismo , Procesamiento Proteico-Postraduccional , Centrómero/química , Centrómero/genética , Proteína A Centromérica/química , Proteína A Centromérica/metabolismo , Cromatina/química , Cromatina/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-28840663

RESUMEN

Noncoding RNAs (ncRNAs) have emerged as crucial players in chromatin regulation. Their diversity allows them to partake in the regulation of numerous cellular processes across species. During development, long and short ncRNAs act in conjunction with each other where long ncRNAs (lncRNAs) are best understood in establishing appropriate gene expression patterns, while short ncRNAs (sRNAs) are known to establish constitutive heterochromatin and suppress mobile elements. Additionally, increasing evidence demonstrates roles of sRNAs in several typically lncRNA-mediated processes such as dosage compensation, indicating a complex regulatory network of noncoding RNAs. Together, various ncRNAs establish many mitotically heritable epigenetic marks during development. Additionally, they participate in mechanisms that regulate maintenance of these epigenetic marks during the lifespan of the organism. Interestingly, some epigenetic traits are transmitted to the next generation(s) via paramutations or transgenerational inheritance mediated by sRNAs. In this review, we give an overview of the various functions and regulations of ncRNAs and the mechanisms they employ in the establishment and maintenance of epigenetic marks and multi-generational transmission of epigenetic traits. WIREs RNA 2017, 8:e1435. doi: 10.1002/wrna.1435 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Compensación de Dosificación (Genética)/fisiología , Redes Reguladoras de Genes/fisiología , Heterocromatina/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Heterocromatina/genética , Humanos , ARN Largo no Codificante/genética
13.
Sci Rep ; 7(1): 2265, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28536419

RESUMEN

In recent years, long non-coding RNA (lncRNA) research has identified essential roles of these transcripts in virtually all physiological cellular processes including tumorigenesis, but their functions and molecular mechanisms are poorly understood. In this study, we performed a high-throughput siRNA screen targeting 638 lncRNAs deregulated in cancer entities to analyse their impact on cell division by using time-lapse microscopy. We identified 26 lncRNAs affecting cell morphology and cell cycle including LINC00152. This transcript was ubiquitously expressed in many human cell lines and its RNA levels were significantly upregulated in lung, liver and breast cancer tissues. A comprehensive sequence analysis of LINC00152 revealed a highly similar paralog annotated as MIR4435-2HG and several splice variants of both transcripts. The shortest and most abundant isoform preferentially localized to the cytoplasm. Cells depleted of LINC00152 arrested in prometaphase of mitosis and showed reduced cell viability. In RNA affinity purification (RAP) studies, LINC00152 interacted with a network of proteins that were associated with M phase of the cell cycle. In summary, we provide new insights into the properties and biological function of LINC00152 suggesting that this transcript is crucial for cell cycle progression through mitosis and thus, could act as a non-coding oncogene.


Asunto(s)
Ciclo Celular/genética , Mitosis/genética , ARN Largo no Codificante/genética , Empalme Alternativo , Puntos de Control del Ciclo Celular/genética , División Celular/genética , Proliferación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Especificidad de Órganos/genética , Proteómica/métodos , Interferencia de ARN , Transporte de ARN , Imagen de Lapso de Tiempo
14.
Cell Mol Life Sci ; 73(7): 1387-98, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26748759

RESUMEN

Centromeres represent the basis for kinetochore formation, and are essential for proper chromosome segregation during mitosis. Despite these essential roles, centromeres are not defined by specific DNA sequences, but by epigenetic means. The histone variant CENP-A controls centromere identity epigenetically and is essential for recruiting kinetochore components that attach the chromosomes to the mitotic spindle during mitosis. Recently, a new player in centromere regulation has emerged: long non-coding RNAs transcribed from repetitive regions of centromeric DNA function in regulating centromeres epigenetically. This review summarizes recent findings on the essential roles that transcription, pericentromeric transcripts, and centromere-derived RNAs play in centromere biology.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Epigenómica , ARN Largo no Codificante/metabolismo , Centrómero/metabolismo , Proteína A Centromérica , Cromatina/metabolismo , Humanos , Cinetocoros , Mitosis
15.
J Cell Biol ; 207(3): 335-49, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25365994

RESUMEN

Chromosome segregation requires centromeres on every sister chromatid to correctly form and attach the microtubule spindle during cell division. Even though centromeres are essential for genome stability, the underlying centromeric DNA is highly variable in sequence and evolves quickly. Epigenetic mechanisms are therefore thought to regulate centromeres. Here, we show that the 359-bp repeat satellite III (SAT III), which spans megabases on the X chromosome of Drosophila melanogaster, produces a long noncoding RNA that localizes to centromeric regions of all major chromosomes. Depletion of SAT III RNA causes mitotic defects, not only of the sex chromosome but also in trans of all autosomes. We furthermore find that SAT III RNA binds to the kinetochore component CENP-C, and is required for correct localization of the centromere-defining proteins CENP-A and CENP-C, as well as outer kinetochore proteins. In conclusion, our data reveal that SAT III RNA is an integral part of centromere identity, adding RNA to the complex epigenetic mark at centromeres in flies.


Asunto(s)
División Celular , Cinetocoros/fisiología , Satélite de ARN/genética , Animales , Línea Celular , Centrómero/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Transporte de ARN , Satélite de ARN/fisiología
16.
Cell Rep ; 7(2): 321-330, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24703848

RESUMEN

Chromatin reorganization and the incorporation of specific histone modifications during DNA damage response are essential steps for the successful repair of any DNA lesion. Here, we show that the histone-fold protein CHRAC14 plays an essential role in response to DNA damage in Drosophila. Chrac14 mutants are hypersensitive to genotoxic stress and do not activate the G2/M cell-cycle checkpoint after damage induction. Even though the DNA damage repair process is activated in the absence of CHRAC14, lesions are not repaired efficiently. In the absence of CHRAC14, the centromere-specific histone H3 variant CENP-A localizes to sites of DNA damage, causing ectopic kinetochore formation and genome instability. CENP-A and CHRAC14 are able to interact upon damage. Our data suggest that CHRAC14 modulates chromatin composition in response to DNA damage, which is required for efficient DNA damage repair in Drosophila.


Asunto(s)
Cromatina/metabolismo , Daño del ADN , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Nucleoproteínas/metabolismo , Animales , Autoantígenos/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Drosophila/genética , Proteínas de Drosophila/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Inestabilidad Genómica , Cinetocoros/metabolismo , Nucleoproteínas/genética
17.
Dev Cell ; 28(5): 508-19, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24636256

RESUMEN

Centromeres are defined by the presence of the histone H3 variant CENP-A in a subset of centromeric nucleosomes. CENP-A deposition to centromeres depends on a specialized loading factor from yeast to humans that is called CAL1 in Drosophila. Here, we show that CAL1 directly interacts with RDX, an adaptor for CUL3-mediated ubiquitylation. However, CAL1 is not a substrate of the CUL3/RDX ligase but functions as an additional substrate-specifying factor for the CUL3/RDX-mediated ubiquitylation of CENP-A. Remarkably, ubiquitylation of CENP-A by CUL3/RDX does not trigger its degradation but stabilizes CENP-A and CAL1. Loss of RDX leads to a rapid degradation of CAL1 and CENP-A and to massive chromosome segregation defects during development. Essentially, we identified a proteolysis-independent role of ubiquitin conjugation in centromere regulation that is essential for the maintenance of the centromere-defining protein CENP-A and its loading factor CAL1.


Asunto(s)
Centrómero/fisiología , Proteínas Cullin/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Ubiquitina/metabolismo , Animales , Western Blotting , Proteína A Centromérica , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , Masculino , Mutagénesis Sitio-Dirigida , Mutación , Proteolisis , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitinación
18.
Eur J Cell Biol ; 90(10): 805-10, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21684630

RESUMEN

Centromeres support the assembly of the kinetochore on every chromosome and are therefore essential for the proper segregation of sister chromatids during cell division. Centromere identity is regulated epigenetically through the presence of the histone H3 variant CENP-A. CENP-A regulation and incorporation specifically into centromeric nucleosomes are the matter of intensive studies in many different model organisms. Here we briefly review the current knowledge in centromere biology with a focus on Drosophila melanogaster and how these insights lead to new rules and challenges.


Asunto(s)
Centrómero/metabolismo , Animales , Centrómero/genética , Proteína A Centromérica , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epigénesis Genética , Expresión Génica , Herencia , Histonas/genética , Histonas/metabolismo , Humanos , Mitosis
19.
Genes Dev ; 25(7): 673-8, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21460035

RESUMEN

Heterochromatin integrity is crucial for genome stability and regulation of gene expression, but the factors involved in mammalian heterochromatin biology are only incompletely understood. Here we identify the oncoprotein DEK, an abundant nuclear protein with a previously enigmatic in vivo function, as a Suppressor of Variegation [Su(var)] that is crucial to global heterochromatin integrity. We show that DEK interacts directly with Heterochromatin Protein 1 α (HP1α) and markedly enhances its binding to trimethylated H3K9 (H3K9me3), which is key for maintaining heterochromatic regions. Loss of Dek in Drosophila leads to a Su(var) phenotype and global reduction in heterochromatin. Thus, these findings show that DEK is a key factor in maintaining the balance between heterochromatin and euchromatin in vivo.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas Oncogénicas/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Inestabilidad Genómica/genética , Células HEK293 , Células HeLa , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Proteínas Oncogénicas/genética , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Células Tumorales Cultivadas
20.
J Cell Biol ; 183(5): 805-18, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19047461

RESUMEN

Centromeres are the structural and functional foundation for kinetochore formation, spindle attachment, and chromosome segregation. In this study, we isolated factors required for centromere propagation using genome-wide RNA interference screening for defects in centromere protein A (CENP-A; centromere identifier [CID]) localization in Drosophila melanogaster. We identified the proteins CAL1 and CENP-C as essential factors for CID assembly at the centromere. CID, CAL1, and CENP-C coimmunoprecipitate and are mutually dependent for centromere localization and function. We also identified the mitotic cyclin A (CYCA) and the anaphase-promoting complex (APC) inhibitor RCA1/Emi1 as regulators of centromere propagation. We show that CYCA is centromere localized and that CYCA and RCA1/Emi1 couple centromere assembly to the cell cycle through regulation of the fizzy-related/CDH1 subunit of the APC. Our findings identify essential components of the epigenetic machinery that ensures proper specification and propagation of the centromere and suggest a mechanism for coordinating centromere inheritance with cell division.


Asunto(s)
Ciclo Celular/genética , Centrómero/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Interferencia de ARN , Ciclosoma-Complejo Promotor de la Anafase , Animales , Anexina A2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Centrómero/genética , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Ciclina A/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epigénesis Genética , Histonas/genética , Mitosis/genética , Mutación , Proteínas S100/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...