Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 182: 116012, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32730996

RESUMEN

Nanoparticle and microplastic (colloid) transport behaviors impact strategies for groundwater protection and remediation. Complex colloid transport behaviors of anionic nano- and micro-sized colloids have been previously elucidated via independent experiments in chemically-cleaned and amended granular media with grain sizes in the range of fine to coarse sand (e.g., 200-1000 µm). Such experiments show that under conditions where a repulsive barrier was present in colloid-collector interactions (unfavorable conditions), the distribution of retained colloids down-gradient from their source deviates from the exponential decrease expected from compounded loss across a series of collectors (grains). Previous experiments have not examined the impact of colloid size or granular media grain size on colloid distribution down-gradient from their source, particularly in streambed-equilibrated granular media. To address this gap, a field transport experiment in constructed wetland stream beds to distances up to 20 m were conducted for colloids ranging in size from micro to nano (60 nm-7 µm) in streambed-equilibrated pea gravel and sand (4200 and 420 µm mean grain sizes, respectively). All colloid sizes showed non-exponential (hyper-exponential) distributions from source, over meter scales in pea gravel versus cm scales reported for fine sand. Colloids in the ca. 1 µm size range were most mobile, as expected from mass transfer to surfaces and interaction with nanoscale heterogeneity. The distance over which non-exponential colloid distribution occurred increased with media grain size, which carries implications for the potential mechanism driving non-exponential colloid distribution from source, and for strategies to predict transport.


Asunto(s)
Nanopartículas , Plásticos , Coloides , Microplásticos , Tamaño de la Partícula , Porosidad
2.
Environ Sci Technol ; 54(1): 137-145, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31770489

RESUMEN

Lesser pathogen prevalence is well recognized in granular versus fractured aquifers; however, the impact of residence time (inactivation/death) versus removal (pore-scale delivery to surfaces) on pathogen prevalence remains unaddressed. The objective of this study was to examine the specific role of pore-scale delivery to surfaces (removal) as an explanation of contrasting pathogen prevalence in granular versus fractured media from Wisconsin. Inactivation/death was obviated by the use of nonbiological colloids in column transport experiments conducted in representative media from the two Wisconsin sites. Trends in retention as a function of colloid size were examined using nano- to microsized (0.1-4.2 µm) carboxylate-modified polystyrene latex microspheres that represented virus- to protozoa-sized pathogens. Several orders of magnitude greater removal of all colloid sizes were observed in granular relative to those in fractured media, whereas the size corresponding to minimum retention contrasted between the two media. Particle trajectory simulations in collectors (flow fields with surfaces) representing granular versus fractured media captured the observed contrasting retention and trends with colloid size. These results demonstrate that flow impingement on surfaces at forward flow stagnation zones drives contrasting pore-scale delivery to surfaces in granular versus fractured media and potentially the observed contrasting pathogen prevalence in granular versus fractured aquifers.


Asunto(s)
Coloides , Agua Subterránea , Tamaño de la Partícula , Porosidad , Prevalencia , Wisconsin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...