Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1862(11): 183412, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32710850

RESUMEN

Mannose transporters constitute a superfamily (Man-PTS) of the Phosphoenolpyruvate Carbohydrate Phosphotransferase System (PTS). The membrane complexes are homotrimers of protomers consisting of two subunits, IIC and IID. The two subunits without recognizable sequence similarity assume the same fold, and in the protomer are structurally related by a two fold pseudosymmetry axis parallel to membrane-plane (Liu et al. (2019) Cell Research 29 680). Two reentrant loops and two transmembrane helices of each subunit together form the N-terminal transport domain. Two three-helix bundles, one of each subunit, form the scaffold domain. The protomer is stabilized by a helix swap between these bundles. The two C-terminal helices of IIC mediate the interprotomer contacts. PTS occur in bacteria and archaea but not in eukaryotes. Man-PTS are abundant in Gram-positive bacteria living on carbohydrate rich mucosal surfaces. A subgroup of IICIID complexes serve as receptors for class IIa bacteriocins and as channel for the penetration of bacteriophage lambda DNA across the inner membrane. Some Man-PTS are associated with host-pathogen and -symbiont processes.


Asunto(s)
Proteínas Bacterianas , Bacteriocinas , Bacteriófagos , Bacterias Grampositivas , Manosa , Fosfotransferasas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacteriocinas/química , Bacteriocinas/metabolismo , Bacteriófagos/química , Bacteriófagos/metabolismo , Bacterias Grampositivas/química , Bacterias Grampositivas/metabolismo , Bacterias Grampositivas/virología , Manosa/química , Manosa/metabolismo , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Conformación Proteica en Hélice alfa , Dominios Proteicos
2.
Pflugers Arch ; 472(9): 1129-1153, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32372286

RESUMEN

Glucose arguably is the most important energy carrier, carbon source for metabolites and building block for biopolymers in all kingdoms of life. The proper function of animal organs and tissues depends on the continuous supply of glucose from the bloodstream. Most animals can resorb only a small number of monosaccharides, mostly glucose, galactose and fructose, while all other sugars oligosaccharides and dietary fibers are degraded and metabolized by the microbiota of the lower intestine. Bacteria, in contrast, are omnivorous. They can import and metabolize structurally different sugars and, as a consortium of different species, utilize almost any sugar, sugar derivative and oligosaccharide occurring in nature. Bacteria have membrane transport systems for the uptake of sugars against steep concentration gradients energized by ATP, the proton motive force and the high energy glycolytic intermediate phosphoenolpyruvate (PEP). Different uptake mechanisms and the broad range of overlapping substrate specificities allow bacteria to quickly adapt to and colonize changing environments. Here, we review the structures and mechanisms of bacterial representatives of (i) ATP-dependent cassette (ABC) transporters, (ii) major facilitator (MFS) superfamily proton symporters, (iii) sodium solute symporters (SSS) and (iv) enzyme II integral membrane subunits of the bacterial PEP-dependent phosphotransferase system (PTS). We give a short overview on the distribution of transporter genes and their phylogenetic relationship in different bacterial species. Some sugar transporters are hijacked for import of bacteriophage DNA and antibacterial toxins (bacteriocins) and they facilitate the penetration of polar antibiotics. Finally, we describe how the expression and activity of certain sugar transporters are controlled in response to the availability of sugars and how the presence and uptake of sugars may affect pathogenicity and host-microbiota interactions.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/genética
3.
Subcell Biochem ; 92: 223-274, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214989

RESUMEN

The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins.


Asunto(s)
Bacterias/enzimología , Bacterias/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Azúcares/metabolismo , Transporte Biológico , Fosforilación
4.
J Struct Biol ; 176(3): 395-403, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21996078

RESUMEN

The glucose transporter IICB of the Escherichia coli phosphotransferase system (PTS) consists of a polytopic membrane domain (IIC) responsible for substrate transport and a hydrophilic C-terminal domain (IIB) responsible for substrate phosphorylation. We have overexpressed and purified a triple mutant of IIC (mut-IIC), which had recently been shown to be suitable for crystallization purposes. Mut-IIC was homodimeric as determined by blue native-PAGE and gel-filtration, and had an eyeglasses-like structure as shown by negative-stain transmission electron microscopy (TEM) and single particle analysis. Glucose binding and transport by mut-IIC, mut-IICB and wildtype-IICB were compared with scintillation proximity and in vivo transport assays. Binding was reduced and transport was impaired by the triple mutation. The scintillation proximity assay allowed determination of substrate binding, affinity and specificity of wildtype-IICB by a direct method. 2D crystallization of mut-IIC yielded highly-ordered tubular crystals and made possible the calculation of a projection structure at 12Å resolution by negative-stain TEM. Immunogold labeling TEM revealed the sidedness of the tubular crystals, and high-resolution atomic force microscopy the surface structure of mut-IIC. This work presents the structure of a glucose PTS transporter at the highest resolution achieved so far and sets the basis for future structural studies.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas Facilitadoras del Transporte de la Glucosa/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Cristalografía , Proteínas de Escherichia coli/genética , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Procesamiento de Imagen Asistido por Computador , Proteínas de la Membrana/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Estructura Terciaria de Proteína , Especificidad por Sustrato
5.
Biochemistry ; 50(7): 1184-93, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21250658

RESUMEN

Thermoanaerobacter tengcongensis is a thermophilic eubacterium that has a phosphoenolpyruvate (PEP) sugar phosphotransferase system (PTS) of 22 proteins. The general PTS proteins, enzyme I and HPr, and the transporters for N-acetylglucosamine (EIICB(GlcNAc)) and fructose (EIIBC(Fru)) have thermal unfolding transitions at ∼90 °C and a temperature optimum for in vitro sugar phosphotransferase activity of 65 °C. The phosphocysteine of a EIICB(GlcNAc) mutant is unusually stable at room temperature with a t(1/2) of 60 h. The PEP binding C-terminal domain of enzyme I (EIC) forms a metastable covalent adduct with PEP at 65 °C. Crystallization of this adduct afforded the 1.68 Å resolution structure of EIC with a molecule of pyruvate in the active site. We also report the 1.83 Å crystal structure of the EIC-PEP complex. The comparison of the two structures with the apo form and with full-length EI shows differences between the active site side chain conformations of the PEP and pyruvate states but not between the pyruvate and apo states. In the presence of PEP, Arg465 forms a salt bridge with the phosphate moiety while Glu504 forms salt bridges with Arg186 and Arg195 of the N-terminal domain of enzyme I (EIN), which stabilizes a conformation appropriate for the in-line transfer of the phosphoryl moiety from PEP to His191. After transfer, Arg465 swings 4.8 Å away to form an alternative salt bridge with the carboxylate of Glu504. Glu504 loses the grip of Arg186 and Arg195, and the EIN domain can swing away to hand on the phosphoryl group to the phosphoryl carrier protein HPr.


Asunto(s)
Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Thermoanaerobacter/enzimología , Clonación Molecular , Cristalografía por Rayos X , Estabilidad de Enzimas/genética , Estabilidad de Enzimas/fisiología , Calor , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/aislamiento & purificación , Fosforilación , Conformación Proteica , Desnaturalización Proteica , Thermoanaerobacter/química , Thermoanaerobacter/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-20516600

RESUMEN

The glucose-import system of Escherichia coli consists of a hydrophilic EIIA(Glc) subunit and a transmembrane EIICB(Glc) subunit. EIICB(Glc) (UniProt P69786) contains two domains: the transmembrane EIIC(Glc) domain (40.6 kDa) and the cytoplasmic EIIB(Glc) domain (8.0 kDa), which are fused by a linker that is strongly conserved among its orthologues. The EIICB(Glc) subunit can be split within this motif by trypsin. Here, the crystallization of the tryptic EIIC(Glc) domain is described. A complete data set was collected to 4.5 A resolution at 100 K.


Asunto(s)
Escherichia coli/química , Proteínas Facilitadoras del Transporte de la Glucosa/química , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Expresión Génica , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/aislamiento & purificación , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
7.
J Biol Chem ; 284(48): 33169-76, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19801641

RESUMEN

The bacterial phosphoenolpyruvate (PEP) sugar phosphotransferase system mediates sugar uptake and controls the carbon metabolism in response to carbohydrate availability. Enzyme I (EI), the first component of the phosphotransferase system, consists of an N-terminal protein binding domain (EIN) and a C-terminal PEP binding domain (EIC). EI transfers phosphate from PEP by double displacement via a histidine residue on EIN to the general phosphoryl carrier protein HPr. Here we report the 2.4 A crystal structure of the homodimeric EI from Staphylococcus aureus. EIN consists of the helical hairpin HPr binding subdomain and the phosphorylatable betaalpha phospho-histidine (P-His) domain. EIC folds into an (betaalpha)(8) barrel. The dimer interface of EIC buries 1833 A(2) of accessible surface per monomer and contains two Ca(2+) binding sites per dimer. The structures of the S. aureus and Escherichia coli EI domains (Teplyakov, A., Lim, K., Zhu, P. P., Kapadia, G., Chen, C. C., Schwartz, J., Howard, A., Reddy, P. T., Peterkofsky, A., and Herzberg, O. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 16218-16223) are very similar. The orientation of the domains relative to each other, however, is different. In the present structure the P-His domain is docked to the HPr binding domain in an orientation appropriate for in-line transfer of the phosphate to the active site histidine of the acceptor HPr. In the E. coli structure the phospho-His of the P-His domain projects into the PEP binding site of EIC. In the S. aureus structure the crystallographic temperature factors are lower for the HPr binding domain in contact with the P-His domain and higher for EIC. In the E. coli structure it is the reverse.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética
8.
J Biol Chem ; 283(51): 35789-96, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18957416

RESUMEN

Bacterial dihydroxyacetone (Dha) kinases do not exchange the ADP for ATP but utilize a subunit of the phosphoenolpyruvate carbohydrate phosphotransferase system for in situ rephosphorylation of a permanently bound ADP-cofactor. Here we report the 2.1-angstroms crystal structure of the transient complex between the phosphotransferase subunit DhaM of the phosphotransferase system and the nucleotide binding subunit DhaL of the Dha kinase of Lactococcus lactis, the 1.1-angstroms structure of the free DhaM dimer, and the 2.5-angstroms structure of the Dha-binding DhaK subunit. Conserved salt bridges and an edge-to-plane stacking contact between two tyrosines serve to orient DhaL relative to the DhaM dimer. The distance between the imidazole Nepsilon2 of the DhaM His-10 and the beta-phosphate oxygen of ADP, between which the gamma-phosphate is transferred, is 4.9 angstroms. An invariant arginine, which is essential for activity, is appropriately positioned to stabilize the gamma-phosphate in the transition state. The (betaalpha)4alpha fold of DhaM occurs a second time as a subfold in the DhaK subunit. By docking DhaL-ADP to this subfold, the nucleotide bound to DhaL and the C1-hydroxyl of Dha bound to DhaK are positioned for in-line transfer of phosphate.


Asunto(s)
Adenosina Difosfato/química , Proteínas Bacterianas/química , Lactococcus lactis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Subunidades de Proteína/química , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína
10.
J Biol Chem ; 281(32): 23129-37, 2006 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-16760471

RESUMEN

Dihydroxyacetone (Dha) kinases are a novel family of kinases with signaling and metabolic functions. Here we report the x-ray structures of the transcriptional activator DhaS and the coactivator DhaQ and characterize their function. DhaQ is a paralog of the Dha binding Dha kinase subunit; DhaS belongs to the family of TetR repressors although, unlike all known members of this family, it is a transcriptional activator. DhaQ and DhaS form a stable complex that in the presence of Dha activates transcription of the Lactococcus lactis dha operon. Dha covalently binds to DhaQ through a hemiaminal bond with a histidine and thereby induces a conformational change, which is propagated to the surface via a cantilever-like structure. DhaS binding protects an inverted repeat whose sequence is GGACACATN6ATTTGTCC and renders two GC base pairs of the operator DNA hypersensitive to DNase I cleavage. The proximal half-site of the inverted repeat partially overlaps with the predicted -35 consensus sequence of the dha promoter.


Asunto(s)
Lactococcus lactis/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Proteínas Represoras/fisiología , Transcripción Genética , Secuencia de Aminoácidos , Desoxirribonucleasa I/química , Histidina/química , Modelos Genéticos , Datos de Secuencia Molecular , Operón , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido
11.
J Mol Biol ; 359(3): 539-45, 2006 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16647083

RESUMEN

Dihydroxyacetone (Dha) kinases are a family of sequence-related enzymes that utilize either ATP or phosphoenolpyruvate (PEP) as source of high energy phosphate. The PEP-dependent Dha kinase of Escherichia coli consists of three subunits. DhaK and DhaL are homologous to the Dha and nucleotide-binding domains of the ATP-dependent kinase of Citrobacter freundii. The DhaM subunit is a multiphosphorylprotein of the PEP:sugar phosphotransferase system (PTS). DhaL contains a tightly bound ADP as coenzyme that gets transiently phosphorylated in the double displacement of phosphate between DhaM and Dha. Here we report the 2.6A crystal structure of the E.coli DhaL subunit. DhaL folds into an eight-helix barrel of regular up-down topology with a hydrophobic core made up of eight interlocked aromatic residues and a molecule of ADP bound at the narrower end of the barrel. The alpha and beta phosphates of ADP are complexed by two Mg2+ and by a hydrogen bond to the imidazole ring of an invariant histidine. The Mg ions in turn are coordinated by three gamma-carboxyl groups of invariant aspartate residues. Water molecules complete the octahedral coordination sphere. The nucleotide is capped by an alpha-helical segment connecting helices 7 and 8 of the barrel. DhaL and the nucleotide-binding domain of the C.freundii kinase assume the same fold but display strongly different surface potentials. The latter observation and biochemical data indicate that the domains of the C.freundii Dha kinase constitute one cooperative unit and are not randomly interacting and independent like the subunits of the E.coli enzyme.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Adenosina Difosfato/química , Adenosina Trifosfato/química , Ácido Aspártico/química , Citrobacter freundii/enzimología , Proteínas de Escherichia coli/metabolismo , Magnesio/química , Modelos Moleculares , Fosfatos/química , Fosforilación , Pliegue de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Agua/química
12.
J Biol Chem ; 281(26): 17900-8, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16636060

RESUMEN

Strains of Escherichia coli K12, including MG-1655, accumulate methyl-alpha-D-glucopyranoside via the phosphoenolpyruvate-dependent glucose:phosphotransferase system (IICB(Glc)/IIA(Glc)). High concentrations of intracellular methyl-alpha-D-glucopyranoside 6-phosphate are toxic, and cell growth is prevented. However, transformation of E. coli MG-1655 with a plasmid (pAP1) encoding the gene aglB from Klebsiella pneumoniae resulted in excellent growth of the transformant MG-1655 (pAP1) on the glucose analog. AglB is an unusual NAD+/Mn2+-dependent phospho-alpha-glucosidase that promotes growth of MG-1655 (pAP1) by catalyzing the in vivo hydrolysis of methyl-alpha-D-glucopyranoside 6-phosphate to yield glucose 6-phosphate and methanol. When transformed with plasmid pAP2 encoding the K. pneumoniae genes aglB and aglA (an alpha-glucoside-specific transporter AglA (IICB(Agl))), strain MG-1655 (pAP2) metabolized a variety of other alpha-linked glucosides, including maltitol, isomaltose, and the following five isomers of sucrose: trehalulose alpha(1-->1), turanose alpha(1-->3), maltulose alpha(1-->4), leucrose alpha(1-->5), and palatinose alpha(1-->6). Remarkably, MG-1655 (pAP2) failed to metabolize sucrose alpha(1-->2). The E. coli K12 strain ZSC112L (ptsG::cat manXYZ nagE glk lac) can neither grow on glucose nor transport methyl-alpha-D-glucopyranoside. However, when transformed with pTSGH11 (encoding ptsG) or pAP2, this organism provided membranes that contained either the PtsG or AglA transporters, respectively. In vitro complementation of transporter-specific membranes with purified general phosphotransferase components showed that although PtsG and AglA recognized glucose and methyl-alpha-D-glucopyranoside, only AglA accepted other alpha-D-glucosides as substrates. Complementation experiments also revealed that IIA(Glc) was required for functional activity of both PtsG and AglA transporters. We conclude that AglA, AglB, and IIA(Glc) are necessary and sufficient for growth of E. coli K12 on methyl-alpha-D-glucoside and related alpha-D-glucopyranosides.


Asunto(s)
Escherichia coli K12/crecimiento & desarrollo , Escherichia coli K12/metabolismo , Metilglucósidos/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Sacarosa/metabolismo , Secuencia de Aminoácidos , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fructosa/química , Fructosa/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Isomerismo , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/genética , Datos de Secuencia Molecular , Proteínas Asociadas a Pancreatitis , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Plásmidos , Especificidad por Sustrato , Sacarosa/química , Transformación Genética , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
13.
J Biol Chem ; 280(18): 18321-5, 2005 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15753087

RESUMEN

Dihydroxyacetone kinases are a family of sequence-related enzymes that utilize either ATP or a protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) as a source of high energy phosphate. The PTS is a multicomponent system involved in carbohydrate uptake and control of carbon metabolism in bacteria. Phylogenetic analysis suggests that the PTS-dependent dihydroxyacetone kinases evolved from an ATP-dependent ancestor. Their nucleotide binding subunit, an eight-helix barrel of regular up-down topology, retains ADP as phosphorylation site for the double displacement of phosphate from a phospho-histidine of the PTS protein to dihydroxyacetone. ADP is bound essentially irreversibly with a t((1/2)) of 100 min. Complexation with ADP increases the thermal unfolding temperature of dihydroxyacetone L from 40 (apo-form) to 65 degrees C (holoenzyme). ADP assumes the same role as histidines, cysteines, and aspartic acids in histidine kinases and PTS proteins. This conversion of a substrate binding site into a cofactor binding site reflects a remarkable instance of parsimonious evolution.


Asunto(s)
Adenosina Difosfato/química , Adenosina Trifosfato/química , Coenzimas/química , Evolución Molecular , Nucleótidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Coenzimas/genética , Coenzimas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Nucleótidos/química , Nucleótidos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Filogenia , Unión Proteica/fisiología , Especificidad por Sustrato/fisiología
14.
J Mol Biol ; 346(2): 521-32, 2005 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-15670601

RESUMEN

Enzyme I (EI), the first component of the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS), consists of an N-terminal protein-binding domain (EIN) and a C-terminal PEP-binding domain (EIC). EI transfers phosphate from PEP by double displacement via a histidine residue on EIN to the general phosphoryl carrier protein HPr. Here, we report the 1.82A crystal structure of the homodimeric EIC domain from Thermoanaerobacter tengcongensis, a saccharolytic eubacterium that grows optimally at 75 degrees C. EIC folds into a (betaalpha)(8) barrel with three large helical insertions between beta2/alpha2, beta3/alpha3 and beta6/alpha6. The large amphipathic dimer interface buries 3750A(2) of accessible surface area per monomer. A comparison with pyruvate phosphate dikinase (PPDK) reveals that the active-site residues in the empty PEP-binding site of EIC and in the liganded PEP-binding site of PPDK have almost identical conformations, pointing to a rigid structure of the active site. In silico models of EIC in complex with the Z and E-isomers of chloro-PEP provide a rational explanation for their difference as substrates and inhibitors of EI. The EIC domain exhibits 54% amino acid sequence identity with Escherichia coli and 60% with Bacillus subtilis EIC, has the same amino acid composition but contains additional salt-bridges and a more complex salt-bridge network than the homology model of E.coli EIC. The easy crystallization of EIC suggests that T.tengcongensis can serve as source for stable homologs of mesophilic proteins that are too labile for crystallization.


Asunto(s)
Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/química , Thermoanaerobacter/enzimología , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Inhibidores Enzimáticos , Ligandos , Fosfoenolpiruvato/química , Estructura Terciaria de Proteína , Homología de Secuencia , Especificidad por Sustrato
15.
EMBO J ; 24(2): 283-93, 2005 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-15616579

RESUMEN

Dihydroxyacetone (Dha) kinases are a sequence-conserved family of enzymes, which utilize either ATP (in animals, plants, bacteria) or the bacterial phosphoenolpyruvate carbohydrate phosphotransferase system (PTS) as a source of high-energy phosphate. The PTS-dependent kinase of Escherichia coli consists of three subunits: DhaK contains the Dha binding site, DhaL contains ADP as cofactor for the double displacement of phosphate from DhaM to Dha, and DhaM provides a phospho-histidine relay between the PTS and DhaL::ADP. DhaR is a transcription activator belonging to the AAA+ family of enhancer binding proteins. It stimulates transcription of the dhaKLM operon from a sigma70 promoter and autorepresses dhaR transcription. Genetic and biochemical studies indicate that the enzyme subunits DhaL and DhaK act antagonistically as coactivator and corepressor of the transcription activator by mutually exclusive binding to the sensing domain of DhaR. In the presence of Dha, DhaL is dephosphorylated and DhaL::ADP displaces DhaK and stimulates DhaR activity. In the absence of Dha, DhaL::ADP is converted by the PTS to DhaL::ATP, which does not bind to DhaR.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transactivadores/metabolismo , Secuencia de Aminoácidos , Western Blotting , Dominio Catalítico , Cromatografía en Gel , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Electroforesis en Gel de Poliacrilamida , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Operón , Unión Proteica , Homología de Secuencia de Aminoácido , Transactivadores/química , Transactivadores/genética
16.
Biochemistry ; 43(41): 13037-45, 2004 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-15476397

RESUMEN

Dihydroxyacetone (Dha) kinases are a sequence-conserved family of enzymes, which utilize two different phosphoryldonors, ATP in animals, plants, and some bacteria, and a multiphosphoprotein of the phosphoenolpyruvate carbohydrate phosphotransferase system (PTS) in most bacteria. Here, we compare the PTS-dependent kinase of Escherichia coli and the ATP-dependent kinase of Citrobacter freundii. They display 30% sequence identity. The binding constants of the E. coli kinase for eleven short-chain carbonyl compounds were determined by acetone precipitation of the enzyme-substrate complexes. They are 3.4 microM for Dha, 780 microM for Dha-phosphate (DhaP), 50 microM for D,L-glyceraldehyde (GA), and 90 microM for D,L-glyceraldehyde-3-phosphate. The k(cat) for Dha of the PTS-dependent kinase is 290 min(-1), and that of the ATP-dependent kinase is 1050 min(-1). The Km for Dha of both kinases is <6 microM. The X-ray structures of the enzyme-GA and the enzyme-DhaP complex show that substrates as well as products are bound in hemiaminal linkage to an active-site histidine. Quantum-mechanical calculations offer no indication for activation of the reacting hydroxyl group by the formation of the hemiaminal. However, the formation of the hemiaminal bond allows selection for short-chain carbonyl compounds and discrimination against structurally similar polyols. The Dha kinase remains fully active in the presence of 2 M glycerol, and phosphorylates trace impurities of carbonyl compounds present in glycerol.


Asunto(s)
Acetona/análogos & derivados , Adenosina Trifosfato/química , Citrobacter freundii/enzimología , Proteínas de Escherichia coli/química , Fosfoenolpiruvato/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Acetona/química , Aminas/química , Unión Competitiva , Cristalografía por Rayos X , Dihidroxiacetona Fosfato/química , Inhibidores Enzimáticos/química , Gliceraldehído/química , Cinética , Unión Proteica , Teoría Cuántica , Especificidad por Sustrato
17.
J Biol Chem ; 278(48): 48236-44, 2003 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-12966101

RESUMEN

Dihydroxyacetone kinases are a sequence-conserved family of enzymes, which utilize two different phosphoryldonors, ATP in animals, plants and some bacteria, and a multiphosphoprotein of the phosphoenolpyruvate carbohydrate phosphotransferase system in bacteria. Here we report the 2.5-A crystal structure of the homodimeric Citrobacter freundii dihydroxyacetone kinase complex with an ATP analogue and dihydroxyacetone. The N-terminal domain consists of two alpha/beta-folds with a molecule of dihydroxyacetone covalently bound in hemiaminal linkage to the N epsilon 2 of His-220. The C-terminal domain consists of a regular eight-helix alpha-barrel. The eight helices form a deep pocket, which includes a tightly bound phospholipid. Only the lipid headgroup protrudes from the surface. The nucleotide is bound on the top of the barrel across from the entrance to the lipid pocket. The phosphate groups are coordinated by two Mg2+ ions to gamma-carboxyl groups of aspartyl residues. The ATP binding site does not contain positively charged or aromatic groups. Paralogues of dihydroxyacetone kinase also occur in association with transcription regulators and proteins of unknown function pointing to biological roles beyond triose metabolism.


Asunto(s)
Citrobacter freundii/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Ácido Aspártico/química , Sitios de Unión , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Iones , Magnesio/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfolípidos/metabolismo , Filogenia , Plásmidos/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
18.
Microbiology (Reading) ; 149(Pt 9): 2645-2652, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12949188

RESUMEN

The phosphoenolpyruvate : sugar phosphotransferase system (PTS) catalyses translocation with concomitant phosphorylation of sugars and hexitols and it regulates metabolism in response to the availability of carbohydrates. The PTS forms an interface between energy and signal transduction and its inhibition is likely to have pleiotropic effects. It is present in about one-third of bacteria with fully sequenced genomes, including many common pathogens, but does not occur in eukaryotes. Enzyme I (ptsI) is the first component of the divergent protein phosphorylation cascade. ptsI deletions were constructed in Salmonella typhimurium, Staphylococcus aureus and Haemophilus influenzae and virulence of the mutants was characterized in an intraperitoneal mouse model. The log(attenuation) values were 2.3, 1.4 and 0.9 for the Sal. typhimurium, Sta. aureus and H. influenzae ptsI mutants, respectively. The degree of attenuation is correlated with the complexity of the respective PTS, which comprises approximately 40 components in Sal. typhimurium, but only 5 in H. influenzae.


Asunto(s)
Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/metabolismo , Salmonella typhimurium/enzimología , Animales , Transporte Biológico , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Fosfotransferasas/metabolismo , Salmonella typhimurium/metabolismo
19.
Proc Natl Acad Sci U S A ; 100(14): 8188-92, 2003 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-12813127

RESUMEN

Dihydroxyacetone (Dha) kinases are homologous proteins that use different phosphoryl donors, a multiphosphoryl protein of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system in bacteria, ATP in animals, plants, and some bacteria. The Dha kinase of Escherichia coli consists of three subunits, DhaK and DhaL, which are colinear to the ATP-dependent Dha kinases of eukaryotes, and the multiphosphoryl protein DhaM. Here we show the crystal structure of the DhaK subunit in complex with Dha at 1.75 A resolution. DhaK is a homodimer with a fold consisting of two six-stranded mixed beta-sheets surrounded by nine alpha-helices and a beta-ribbon covering the exposed edge strand of one sheet. The core of the N-terminal domain has an alpha/beta fold common to subunits of carbohydrate transporters and transcription regulators of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system. The core of the C-terminal domain has a fold similar to the C-terminal domain of the cell-division protein FtsZ. A molecule of Dha is covalently bound in hemiaminal linkage to the N epsilon 2 of His-230. The hemiaminal does not participate in covalent catalysis but is the chemical basis for discrimination between short-chain carbonyl compounds and polyols. Paralogs of Dha kinases occur in association with transcription regulators of the TetR/QacR and the SorC families, pointing to their biological role as sensors in signaling.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Secuencia de Aminoácidos , Bacterias/enzimología , Proteínas Bacterianas/química , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Modelos Moleculares , Datos de Secuencia Molecular , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
20.
Biochemistry ; 42(16): 4744-50, 2003 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-12705838

RESUMEN

Enzyme I (EI), the first component of the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS), consists of an N-terminal domain with the phosphorylation site (His-189) and a C-terminal domain with the PEP binding site. Here we use C3-substituted PEP analogues as substrates and inhibitors and the EI(C502A) mutant to characterize structure-activity relationships of the PEP binding site. EI(C502A) is 10 000 times less active than wild-type EI [EI(wt)] with PEP as the substrate, whereas the two forms are equally active with ZClPEP. Cys-502 acts as an acid-base catalyst which stereospecifically protonates the pyruvoyl enolate at C3. The electron-withdrawing chlorine of ZClPEP can compensate for the lack of Cys-502, and in this case, the released 3-Cl-enolate is protonated nonstereospecifically. Several PEP analogues were assayed as inhibitors and as substrates. The respective K(I)/K(m) ratios vary between 3 and 40 for EI(wt), but they are constant and around unity for EI(C502A). EI(wt) with PEP as the substrate is inhibited by oxalate, whereas EI(C502A) with ZClPEP is not. The different behavior of EI(wt) and EI(C502A) toward the PEP analogues and oxalate suggests that the PEP binding site of EI(wt) exists in a "closed" and an "open" form. The open to closed transition is triggered by the interaction of the substrate with Cys-502. The closed conformation is sterically disfavored by C3-modified substrate analogues such as ZClPEP and ZMePEP. If site closure does not occur as with EI(C502A) and bulky substrates, the transition state is stabilized by electron dispersion to the electron-withdrawing substituent at C3.


Asunto(s)
Cisteína/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/química , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/metabolismo , Sitios de Unión , Catálisis , Cisteína/fisiología , Dimerización , Inhibidores Enzimáticos/metabolismo , Isomerismo , Cinética , Mutación , Oxalatos/metabolismo , Fosfoenolpiruvato/análogos & derivados , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/genética , Conformación Proteica , Protones , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...