Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
New Phytol ; 241(2): 747-763, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964509

RESUMEN

Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant-water relations.


Asunto(s)
Arabidopsis , Fucosa , Fucosa/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Boro/metabolismo , Arabidopsis/metabolismo , Polisacáridos/metabolismo
2.
Allergy ; 76(6): 1718-1730, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33037672

RESUMEN

BACKGROUND: Common ragweed has been spreading as a neophyte in Europe. Elevated CO2 levels, a hallmark of global climate change, have been shown to increase ragweed pollen production, but their effects on pollen allergenicity remain to be elucidated. METHODS: Ragweed was grown in climate-controlled chambers under normal (380 ppm, control) or elevated (700 ppm, based on RCP4.5 scenario) CO2 levels. Aqueous pollen extracts (RWE) from control- or CO2 -pollen were administered in vivo in a mouse model for allergic disease (daily for 3-11 days, n = 5) and employed in human in vitro systems of nasal epithelial cells (HNECs), monocyte-derived dendritic cells (DCs), and HNEC-DC co-cultures. Additionally, adjuvant factors and metabolites in control- and CO2 -RWE were investigated using ELISA and untargeted metabolomics. RESULTS: In vivo, CO2 -RWE induced stronger allergic lung inflammation compared to control-RWE, as indicated by lung inflammatory cell infiltrate and mediators, mucus hypersecretion, and serum total IgE. In vitro, HNECs stimulated with RWE increased indistinctively the production of pro-inflammatory cytokines (IL-8, IL-1ß, and IL-6). In contrast, supernatants from CO2 -RWE-stimulated HNECs, compared to control-RWE-stimulated HNECS, significantly increased TNF and decreased IL-10 production in DCs. Comparable results were obtained by stimulating DCs directly with RWEs. The metabolome analysis revealed differential expression of secondary plant metabolites in control- vs CO2 -RWE. Mixes of these metabolites elicited similar responses in DCs as compared to respective RWEs. CONCLUSION: Our results indicate that elevated ambient CO2 levels elicit a stronger RWE-induced allergic response in vivo and in vitro and that RWE increased allergenicity depends on the interplay of multiple metabolites.


Asunto(s)
Ambrosia , Dióxido de Carbono , Alérgenos , Europa (Continente) , Polen
3.
Environ Pollut ; 224: 503-514, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28284545

RESUMEN

Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic annual ruderal plant and native to Northern America, but now also spreading across Europe. Air pollution and climate change will not only affect plant growth, pollen production and duration of the whole pollen season, but also the amount of allergenic encoding transcripts and proteins of the pollen. The objective of this study was to get a better understanding of transcriptional changes in ragweed pollen upon NO2 and O3 fumigation. This will also contribute to a systems biology approach to understand the reaction of the allergenic pollen to air pollution and climate change. Ragweed plants were grown in climate chambers under controlled conditions and fumigated with enhanced levels of NO2 and O3. Illumina sequencing and de novo assembly revealed significant differentially expressed transcripts, belonging to different gene ontology (GO) terms that were grouped into biological process and molecular function. Transcript levels of the known Amb a ragweed encoding allergens were clearly up-regulated under elevated NO2, whereas the amount of allergen encoding transcripts was more variable under elevated O3 conditions. Moreover transcripts encoding allergen known from other plants could be identified. The transcriptional changes in ragweed pollen upon elevated NO2 fumigation indicates that air pollution will alter the transcriptome of the pollen. The changed levels of allergenic encoding transcripts may have an influence on the total allergenic potential of ragweed pollen.


Asunto(s)
Contaminantes Atmosféricos/análisis , Alérgenos/análisis , Ambrosia/crecimiento & desarrollo , Antígenos de Plantas/genética , Dióxido de Nitrógeno/farmacología , Ozono/farmacología , Extractos Vegetales/genética , Transcriptoma/efectos de los fármacos , Ambrosia/efectos de los fármacos , Ambrosia/genética , Antígenos de Plantas/análisis , Cambio Climático , Fumigación , Ontología de Genes , Humanos , América del Norte , Extractos Vegetales/análisis , Estaciones del Año
4.
Z Naturforsch C J Biosci ; 71(7-8): 267-72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27467750

RESUMEN

Atrazine-resistant weeds are well known, and the resistance is primarily caused by a point mutation in the psbA chloroplast gene encoding the photosystem II D1 protein. Heteroplasmy, the presence of different types of chloroplasts in an individual plant, is also very common. Thus, atrazine-resistant weeds may also partly possess the atrazine-binding sequence and vice versa. The region of the psbA gene containing the mutation was sequenced from atrazine-resistant and atrazine-sensitive Chenopodium album and Senecio vulgaris plants. In atrazine-sensitive C. album plants, the expected AGT triplet was found. The atrazine-resistant plants contained the expected base substitution (AGT to GGT); however, in addition the AGT triplet was found. The atrazine-resistant S. vulgaris plants contained the expected GGT sequence, whereas the atrazine-sensitive plants contained both the AGT and GGT sequences. This clearly indicates that in addition to Gly264 also Ser264 is present in atrazine-resistant plants, and vice versa in atrazine-sensitive plants, indicating heteroplasmy in these weeds.


Asunto(s)
Atrazina/farmacología , Chenopodium album/genética , ADN de Cloroplastos/genética , Resistencia a Medicamentos/genética , Variación Genética , Senecio/genética , Sustitución de Aminoácidos , Secuencia de Bases , ADN de Cloroplastos/química , Glicina/genética , Herbicidas/farmacología , Complejo de Proteína del Fotosistema II/genética , Mutación Puntual , Análisis de Secuencia de ADN , Serina/genética , Especificidad de la Especie
6.
Front Plant Sci ; 7: 91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26870080

RESUMEN

This mini-review summarizes the available data of the air pollutants NO2 and ozone on allergenic pollen from different plant species, focusing on potentially allergenic components of the pollen, such as allergen content, protein release, IgE-binding, or protein modification. Various in vivo and in vitro studies on allergenic pollen are shown and discussed.

7.
Plant Cell Environ ; 39(1): 147-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26177592

RESUMEN

Ragweed pollen is the main cause of allergenic diseases in Northern America, and the weed has become a spreading neophyte in Europe. Climate change and air pollution are speculated to affect the allergenic potential of pollen. The objective of this study was to investigate the effects of NO2 , a major air pollutant, under controlled conditions, on the allergenicity of ragweed pollen. Ragweed was exposed to different levels of NO2 throughout the entire growing season, and its pollen further analysed. Spectroscopic analysis showed increased outer cell wall polymers and decreased amounts of pectin. Proteome studies using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry indicated increased amounts of several Amb a 1 isoforms and of another allergen with great homology to enolase Hev b 9 from rubber tree. Analysis of protein S-nitrosylation identified nitrosylated proteins in pollen from both conditions, including Amb a 1 isoforms. However, elevated NO2 significantly enhanced the overall nitrosylation. Finally, we demonstrated increased overall pollen allergenicity by immunoblotting using ragweed antisera, showing a significantly higher allergenicity for Amb a 1. The data highlight a direct influence of elevated NO2 on the increased allergenicity of ragweed pollen and a direct correlation with an increased risk for human health.


Asunto(s)
Alérgenos/inmunología , Ambrosia/inmunología , Antígenos de Plantas/inmunología , Dióxido de Nitrógeno/farmacología , Extractos Vegetales/inmunología , Contaminación del Aire , Alérgenos/efectos de los fármacos , Alérgenos/genética , Ambrosia/efectos de los fármacos , Ambrosia/genética , Antígenos de Plantas/efectos de los fármacos , Antígenos de Plantas/genética , Cambio Climático , Análisis por Conglomerados , Electroforesis en Gel Bidimensional , Europa (Continente) , Humanos , Extractos Vegetales/genética , Proteínas de Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Estaciones del Año
8.
Micromachines (Basel) ; 7(7)2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-30404280

RESUMEN

We developed different types of glass cell-culture chips (GC³s) for culturing cells for microscopic observation in open media-containing troughs or in microfluidic structures. Platinum sensor and manipulation structures were used to monitor physiological parameters and to allocate and permeabilize cells. Electro-thermal micro pumps distributed chemical compounds in the microfluidic systems. The integrated temperature sensors showed a linear, Pt1000-like behavior. Cell adhesion and proliferation were monitored using interdigitated electrode structures (IDESs). The cell-doubling times of primary murine embryonic neuronal cells (PNCs) were determined based on the IDES capacitance-peak shifts. The electrical activity of PNC networks was detected using multi-electrode arrays (MEAs). During seeding, the cells were dielectrophoretically allocated to individual MEAs to improve network structures. MEA pads with diameters of 15, 20, 25, and 35 µm were tested. After 3 weeks, the magnitudes of the determined action potentials were highest for pads of 25 µm in diameter and did not differ when the inter-pad distances were 100 or 170 µm. Using 25-µm diameter circular oxygen electrodes, the signal currents in the cell-culture media were found to range from approximately -0.08 nA (0% O2) to -2.35 nA (21% O2). It was observed that 60-nm thick silicon nitride-sensor layers were stable potentiometric pH sensors under cell-culture conditions for periods of days. Their sensitivity between pH 5 and 9 was as high as 45 mV per pH step. We concluded that sensorized GC³s are potential animal replacement systems for purposes such as toxicity pre-screening. For example, the effect of mefloquine, a medication used to treat malaria, on the electrical activity of neuronal cells was determined in this study using a GC³ system.

9.
Int J Biomater ; 2015: 584362, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26539216

RESUMEN

Studies on bone cell ingrowth into synthetic, porous three-dimensional (3D) implants showed difficulties arising from impaired cellular proliferation and differentiation in the core region of these scaffolds with increasing scaffold volume in vitro. Therefore, we developed an in vitro perfusion cell culture module, which allows the analysis of cells in the interior of scaffolds under different medium flow rates. For each flow rate the cell viability was measured and compared with results from computer simulations that predict the local oxygen supply and shear stress inside the scaffold based on the finite element method. We found that the local cell viability correlates with the local oxygen concentration and the local shear stress. On the one hand the oxygen supply of the cells in the core becomes optimal with a higher perfusion flow. On the other hand shear stress caused by high flow rates impedes cell vitality, especially at the surface of the scaffold. Our results demonstrate that both parameters must be considered to derive an optimal nutrient flow rate.

10.
Biosensors (Basel) ; 5(3): 513-36, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26263849

RESUMEN

We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETµPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 µm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 µm(2). Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-µm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.


Asunto(s)
Técnicas Biosensibles , Adhesión Celular , Técnicas de Cultivo de Célula , Concentración de Iones de Hidrógeno , Microfluídica/métodos , Consumo de Oxígeno , Animales , Electrodos , Fibroblastos , Dispositivos Laboratorio en un Chip , Ratones , Microfluídica/instrumentación
11.
PLoS Genet ; 11(7): e1005373, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26197346

RESUMEN

Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion. In particular, the analysis of reactive oxygen species (ROS)-related stress responses, such as regulation of the stomatal aperture, suggests that CRKs participate in ROS/redox signalling and sensing. CRKs play general and fine-tuning roles in the regulation of stomatal closure induced by microbial and abiotic cues. Despite their great number and high similarity, large-scale phenotyping identified specific functions in diverse processes for many CRKs and indicated that CRK2 and CRK5 play predominant roles in growth regulation and stress adaptation, respectively. As a whole, the CRKs contribute to specificity in ROS signalling. Individual CRKs control distinct responses in an antagonistic fashion suggesting future potential for using CRKs in genetic approaches to improve plant performance and stress tolerance.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Estrés Oxidativo/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Ascomicetos/inmunología , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas Serina-Treonina Quinasas/genética , Pseudomonas syringae/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Xantina Oxidasa/metabolismo
12.
BMC Plant Biol ; 14: 176, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24972689

RESUMEN

BACKGROUND: Pollen of common ragweed (Ambrosia artemisiifolia) is a main cause of allergic diseases in Northern America. The weed has recently become spreading as a neophyte in Europe, while climate change may also affect the growth of the plant and additionally may also influence pollen allergenicity. To gain better insight in the molecular mechanisms in the development of ragweed pollen and its allergenic proteins under global change scenarios, we generated SuperSAGE libraries to identify differentially expressed transcripts. RESULTS: Ragweed plants were grown in a greenhouse under 380 ppm CO2 and under elevated level of CO2 (700 ppm). In addition, drought experiments under both CO2 concentrations were performed. The pollen viability was not altered under elevated CO2, whereas drought stress decreased its viability. Increased levels of individual flavonoid metabolites were found under elevated CO2 and/or drought. Total RNA was isolated from ragweed pollen, exposed to the four mentioned scenarios and four SuperSAGE libraries were constructed. The library dataset included 236,942 unique sequences, showing overlapping as well as clear differently expressed sequence tags (ESTs). The analysis targeted ESTs known in Ambrosia, as well as in pollen of other plants. Among the identified ESTs, those encoding allergenic ragweed proteins (Amb a) increased under elevated CO2 and drought stress. In addition, ESTs encoding allergenic proteins in other plants were also identified. CONCLUSIONS: The analysis of changes in the transcriptome of ragweed pollen upon CO2 and drought stress using SuperSAGE indicates that under global change scenarios the pollen transcriptome was altered, and impacts the allergenic potential of ragweed pollen.


Asunto(s)
Alérgenos/inmunología , Ambrosia/genética , Ambrosia/fisiología , Dióxido de Carbono/farmacología , Sequías , Perfilación de la Expresión Génica , Polen/inmunología , Estrés Fisiológico/genética , Ambrosia/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Bases de Datos Genéticas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Biblioteca de Genes , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Metabolismo Secundario/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Supervivencia Tisular/efectos de los fármacos , Supervivencia Tisular/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
13.
J Proteomics ; 109: 417-35, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24906023

RESUMEN

In the present study, we performed a large-scale protein analysis based on 2-DE DIGE to examine the effects of ozone on the leaves of juvenile European beech (Fagus sylvatica L.), one of the most important deciduous tree species in Central Europe. To this end, beech trees were grown under field conditions and subjected to ambient and twice ambient ozone concentrations during the vegetation periods of four consecutive years. The twice ambient ozone concentration altered the abundance of 237 protein spots, which showed relative ratios higher than 30% compared to the ambient control trees. A total of 74 protein spots were subjected to mass spectrometry identification (LC-MS/MS), followed by homology-driven searches. The differentially expressed proteins participate in key biological processes including the Calvin cycle and photosynthesis, carbon metabolism, defense- and stress-related responses, detoxification mechanisms, protein folding and degradation, and mechanisms involved in senescence. The ozone-induced responses provide evidence of a changing carbon metabolism and counteraction against increased levels of reactive oxygen species. BIOLOGICAL SIGNIFICANCE: This study provides useful information on how European beech, an economically and ecologically important tree species, reacts on the molecular level to increased ozone concentrations expected in the near future. The main emphasis in the present study was placed on identifying differentially abundant proteins after long-term ozone exposure under climatically realistic settings, rather than short-term responses or reactions under laboratory conditions. Additionally, using nursery-grown beech trees, we took into account the natural genotypic variation of this species. As such, the results presented here provide information on molecular responses to ozone in an experimental plant system at very close to natural conditions. Furthermore, this proteomic approach was supported by previous studies on the present experiment. Ultimately, the combination of this proteomic approach with several approaches including transcriptomics, analysis of non-structural carbohydrates, and morphological effects contributes to a more global picture of how beech trees react under increased ozone concentrations.


Asunto(s)
Fagus/metabolismo , Oxidantes Fotoquímicos/farmacología , Ozono/farmacología , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Europa (Continente) , Espectrometría de Masas , Proteómica
14.
PLoS One ; 8(4): e61518, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637846

RESUMEN

Climate change and air pollution, including ozone is known to affect plants and might also influence the ragweed pollen, known to carry strong allergens. We compared the transcriptome of ragweed pollen produced under ambient and elevated ozone by 454-sequencing. An enzyme-linked immunosorbent assay (ELISA) was carried out for the major ragweed allergen Amb a 1. Pollen surface was examined by scanning electron microscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and phenolics were analysed by high-performance liquid chromatography. Elevated ozone had no influence on the pollen size, shape, surface structure or amount of phenolics. ATR-FTIR indicated increased pectin-like material in the exine. Transcriptomic analyses showed changes in expressed-sequence tags (ESTs), including allergens. However, ELISA indicated no significantly increased amounts of Amb a 1 under elevated ozone concentrations. The data highlight a direct influence of ozone on the exine components and transcript level of allergens. As the total protein amount of Amb a 1 was not altered, a direct correlation to an increased risk to human health could not be derived. Additional, the 454-sequencing contributes to the identification of stress-related transcripts in mature pollen that could be grouped into distinct gene ontology terms.


Asunto(s)
Ambrosia/inmunología , Antígenos de Plantas/inmunología , Ozono/farmacología , Proteínas de Plantas/inmunología , Polen/inmunología , Antígenos de Plantas/análisis , Cambio Climático , Ensayo de Inmunoadsorción Enzimática , Ontología de Genes , Polen/efectos de los fármacos , Polen/ultraestructura , Estaciones del Año , Espectroscopía Infrarroja por Transformada de Fourier , Transcriptoma/efectos de los fármacos
15.
Med Eng Phys ; 35(1): 131-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22943838

RESUMEN

At present, wear investigations of total hip replacements are performed in accordance with the ISO standard 14242, which is based on simplified kinematic and force data of the gait cycle. The aim of this analytical study was to generate parameter sets of daily life activities in order to replicate more realistic joint load situations in wear testing. Hence, published in vivo motion and force data of daily life activities were evaluated and adjusted using analytical techniques. The created kinematically and dynamically consistent parameter sets comprised time trajectories of three Cardan angles to describe the motion of the femur with respect to the pelvis and time trajectories of three force components, representing the hip joint contact force. The parameter sets include the activities of walking, knee bending, stair climbing and a combined load case of sitting down and standing up. Additionally, a motion sequence following the frequency of daily life activities was presented. Differences of the evaluated angular motions and joint contact forces in comparison to the ISO standard 14242-1 were pointed out. The results of this study offer the possibility to extend the kinematics and dynamics of the ISO standard test protocol and to support the loading conditions of hip wear simulators with a comprehensive set of motions and loads close to reality.


Asunto(s)
Actividades Cotidianas , Articulación de la Cadera/fisiología , Modelos Teóricos , Movimiento , Prótesis e Implantes , Soporte de Peso , Fenómenos Biomecánicos , Ensayo de Materiales , Postura
16.
Environ Pollut ; 159(12): 3283-93, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21831492

RESUMEN

Ethylenediurea (EDU) has been widely used to prevent ozone (O(3)) injury and crop losses in crop plants and growth reductions in forest trees. Successful use requires establishing a dose/response curve for EDU and the proposed plant in the absence of O(3) and in the presence of O(3) before initiating multiple applications to prevent O(3) injury. EDU can be used to verify foliar O(3) symptoms in the field, and to screen plants for sensitivity to O(3) under ambient conditions. Despite considerable research, the mode of action of EDU remains elusive. Additional research on the mode of action of EDU in suppressing O(3) injury in plants may also be helpful in understanding the mode of action of O(3) in causing injury in plants.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Monitoreo del Ambiente/instrumentación , Ozono/toxicidad , Compuestos de Fenilurea/farmacología , Desarrollo de la Planta , Contaminantes Atmosféricos/metabolismo , Transporte Biológico/efectos de los fármacos , Ozono/metabolismo , Compuestos de Fenilurea/química , Plantas/efectos de los fármacos , Plantas/metabolismo
17.
Z Naturforsch C J Biosci ; 66(11-12): 595-604, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22351985

RESUMEN

A field study was conducted at the Russell E. Larson Agricultural Research Center to determine the effect of transgenic glyphosate-resistant soybean in combination with herbicide (Roundup) application on its endosymbiont Bradyrhizobium japonicum. DNA of bacteroids from isolated nodules was analysed for the presence of the transgenic 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) DNA sequence using polymerase chain reaction (PCR). To further assess the likelihood that the EPSPS gene may be transferred from the Roundup Ready (RR) soybean to B. japonicum, we have examined the natural transformation efficiency of B. japonicum strain 110spc4. Analyses of nodules showed the presence of the transgenic EPSPS DNA sequence. In bacteroids that were isolated from nodules of transgenic soybean plants and then cultivated in the presence of glyphosate this sequence could not be detected. This indicates that no stable horizontal gene transfer (HGT) of the EPSPS gene had occurred under field conditions. Under laboratory conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various amounts of recombinant plasmid DNA. Our results indicate that no natural competence state exists in B. japonicum 110spc4. Results from field and laboratory studies indicate the lack of functional transfer of the CP4-EPSPS gene from glyphosate-tolerant soybean treated with glyphosate to root-associated B. japonicum.


Asunto(s)
Bradyrhizobium/genética , Técnicas de Transferencia de Gen , Glycine max/genética , Glicina/análogos & derivados , Resistencia a los Insecticidas/genética , Secuencia de Bases , Cartilla de ADN , Glicina/farmacología , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , Glifosato
18.
Acta Biomater ; 6(9): 3798-807, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20227531

RESUMEN

Synthetic materials have emerged as bone substitutes for filling bone defects of critical sizes. Because bone healing requires a mechanically resistant matrix (scaffold) attractive to osteogenic cells and must allow revascularization for nutrient and oxygen supply, scaffold-based strategies focus on the further development of chemical and physical qualities of the material. Cellular ingrowth towards the scaffold center is critical; therefore selective information from inner regions, in particular from the central part, is essential. In this paper we introduce a novel modular in vitro system for three-dimensional (3-D) in vitro bone cell cultures. This 3-D system is developed exclusively for in vitro research purposes, with special emphasis on the geometrical scaffold design (pore size, pore design). The system is composed of a stack of titanium slices which are mounted on a clamp and which enable the separate monitoring of cell growth patterns on every single slice of the slide stack. In this way we are able to gain selective information about the regulation of the cell physiology in the inner part of the 3-D construct which can be used for the development of an optimized scaffold design for orthopedic implants.


Asunto(s)
Huesos/citología , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Osteoblastos/citología , Actinas/metabolismo , Recuento de Células , Línea Celular Tumoral , Proliferación Celular , Humanos , Microscopía Confocal , Osteoblastos/ultraestructura , Porosidad , Coloración y Etiquetado
19.
Environ Pollut ; 158(4): 977-82, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19744757

RESUMEN

Tropospheric ozone causes severe oxidative stress in plants. To investigate the transcriptional responsiveness of adult trees to ozone, fully-expanded sun and shade leaves of mature beech trees were harvested at four time points over the entire vegetation period in 2005 and 2006. Microarray analyses were conducted on leaves from trees grown in the field under ambient and twice-ambient ozone concentrations at Kranzberger Forst (Bavaria). Beech trees changed their transcript levels in response to ozone. In the years 2005 and 2006 different transcription patterns were observed; this may have been a result of different weather conditions and ozone uptake. Furthermore, we obtained differences in mRNA expression patterns between shade and sun leaves. In the ozone-treated sun leaves of 2005, slightly up- and down-regulated transcript levels were detected, particularly in the spring and autumn, whereas shade leaves clearly exhibited reduced mRNA levels, particularly at the end of the vegetation period. In 2006, this pattern could not be confirmed, and in the autumn, four other transcripts were slightly up-regulated in ozone-treated shade leaves. In addition, two other transcripts were found to be influenced in sun leaves in the spring/summer. While we detected changes in the levels of only a few transcripts, the observed effects were not identical in both years. In conclusion, elevated ozone exhibited very small influence on the transcription levels of genes of mature beech trees.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Fagus/genética , Ozono/toxicidad , Transcripción Genética/efectos de los fármacos , Europa (Continente) , Fagus/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos
20.
Protoplasma ; 243(1-4): 95-103, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19669863

RESUMEN

Long-term effects of ultraviolet (UV) radiation on flavonoid biosynthesis were investigated in Arabidopsis thaliana using the sun simulators of the Helmholtz Zentrum München. The plants, which are widely used as a model system, were grown (1) at high photosynthetically active radiation (PAR; 1,310 micromol m(-2) s(-1)) and high biologically effective UV irradiation (UV-B(BE) 180 mW m(-2)) during a whole vegetative growth period. Under this irradiation regime, the levels of quercetin products were distinctively elevated with increasing UV-B irradiance. (2) Cultivation at high PAR (1,270 micromol m(-2) s(-1)) and low UV-B (UV-B(BE) 25 mW m(-2)) resulted in somewhat lower levels of quercetin products compared to the high-UV-B(BE) conditions, and only a slight increase with increasing UV-B irradiance was observed. On the other hand, when the plants were grown (3) at low PAR (540 micromol m(-2) s(-1)) and high UV-B (UV-B(BE) 180 mW m(-2)), the accumulation of quercetin products strongly increased from very low levels with increasing amounts of UV-B but the accumulation of kaempferol derivatives and sinapoyl glucose was less pronounced. We conclude (4) that the accumulation of quercetin products triggered by PAR leads to a basic UV protection that is further increased by UV-B radiation. Based on our data, (5) a combined effect of PAR and different spectral sections of UV radiation is satisfactorily described by a biological weighting function, which again emphasizes the additional role of UV-A (315-400 nm) in UV action on A. thaliana.


Asunto(s)
Arabidopsis , Flavonoides/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Rayos Ultravioleta , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Quempferoles/metabolismo , Fotosíntesis/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...