Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Leukemia ; 38(5): 1072-1080, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548962

RESUMEN

Blast phase (BP) of chronic myeloid leukemia (CML) still represents an unmet clinical need with a dismal prognosis. Due to the rarity of the condition and the heterogeneity of the biology and clinical presentation, prospective trials and concise treatment recommendations are lacking. Here we present the analysis of the European LeukemiaNet Blast Phase Registry, an international collection of the clinical presentation, treatment and outcome of blast phases which had been diagnosed in CML patients after 2015. Data reveal the expected heterogeneity of the entity, lacking a clear treatment standard. Outcomes remain dismal, with a median overall survival of 23.8 months (median follow up 27.8 months). Allogeneic stem cell transplantation (alloSCT) increases the rate of deep molecular responses. De novo BP and BP evolving from a previous CML do show slightly different features, suggesting a different biology between the two entities. Data show that outside clinical trials and in a real-world setting treatment of blast phase is individualized according to disease- and patient-related characteristics, with the aim of blast clearance prior to allogeneic stem cell transplantation. AlloSCT should be offered to all patients eligible for this procedure.


Asunto(s)
Crisis Blástica , Leucemia Mielógena Crónica BCR-ABL Positiva , Inhibidores de Proteínas Quinasas , Sistema de Registros , Humanos , Crisis Blástica/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Leucemia Mielógena Crónica BCR-ABL Positiva/mortalidad , Inhibidores de Proteínas Quinasas/uso terapéutico , Persona de Mediana Edad , Masculino , Adulto , Femenino , Anciano , Adulto Joven , Trasplante Homólogo , Europa (Continente) , Trasplante de Células Madre Hematopoyéticas/métodos , Pronóstico , Adolescente , Resultado del Tratamiento , Tasa de Supervivencia , Manejo de la Enfermedad , Estudios de Seguimiento
2.
Microb Cell Fact ; 23(1): 29, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245756

RESUMEN

BACKGROUND: Industrial by-products accrue in most agricultural or food-related production processes, but additional value chains have already been established for many of them. Crude glycerol has a 60% lower market value than commercial glucose, as large quantities are produced in the biodiesel industry, but its valorisation is still underutilized. Due to its high carbon content and the natural ability of many microorganisms to metabolise it, microbial upcycling is a suitable option for this waste product. RESULTS: In this work, the use of crude glycerol for the production of the value-added compound itaconate is demonstrated using the smut fungus Ustilago maydis. Starting with a highly engineered strain, itaconate production from an industrial glycerol waste stream was quickly established on a small scale, and the resulting yields were already competitive with processes using commercial sugars. Adaptive laboratory evolution resulted in an evolved strain with a 72% increased growth rate on glycerol. In the subsequent development and optimisation of a fed-batch process on a 1.5-2 L scale, the use of molasses, a side stream of sugar beet processing, eliminated the need for other expensive media components such as nitrogen or vitamins for biomass growth. The optimised process was scaled up to 150 L, achieving an overall titre of 72 g L- 1, a yield of 0.34 g g- 1, and a productivity of 0.54 g L- 1 h- 1. CONCLUSIONS: Pilot-scale itaconate production from the complementary waste streams molasses and glycerol has been successfully established. In addition to achieving competitive performance indicators, the proposed dual feedstock strategy offers lower process costs and carbon footprint for the production of bio-based itaconate.


Asunto(s)
Glicerol , Succinatos , Glicerol/metabolismo , Succinatos/metabolismo , Glucosa/metabolismo
3.
Strahlenther Onkol ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713170

RESUMEN

PURPOSE: Patient misidentification in radiation oncology (RO) is a significant concern due to the potential harm to patient health and the burden on healthcare systems. Electronic patient identification systems (ePIS) are increasingly being used as an alternative or supplement to organizational systems (oPIS). The objective of this study was to assess the usability and usefulness of ePIS and oPIS in German-speaking countries. METHODS: A cross-sectional survey was designed by a group of experts from various professional backgrounds in RO. The survey consisted of 38 questions encompassing quantitative and qualitative data on usability, user experience, and usefulness of PIS. It was available between August and October 2022. RESULTS: Of 118 eligible participants, 37% had implemented some kind of ePIS. Overall, 22% of participants who use an oPIS vs. 10% of participants who use an ePIS reported adverse events in terms of patients' misidentification in the past 5 years. Frequent or very frequent drop-outs of electronic systems were reported by 31% of ePIS users. Users of ePIS significantly more often affirmed a positive cost-benefit ratio of ePIS as well as an improvement of workflow, whereas users of oPIS more frequently apprehended a decrease in staffs' attention through ePIS. The response rate was 8%. CONCLUSION: The implementation of ePIS can contribute to efficient PI and improved processes. Apprehensions by oPIS users and assessments of ePIS users differ significantly in aspects of the perceived usefulness of ePIS. However, technical problems need to be addressed to ensure the reliability of ePIS. Further research is needed to assess the impact of different PIS on patient safety in RO.

4.
BMC Biotechnol ; 23(1): 34, 2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37661280

RESUMEN

BACKGROUND: Currently, Aspergillus terreus is used for the industrial production of itaconic acid. Although, alternative feedstock use in fermentations is crucial for cost-efficient and sustainable itaconic acid production, their utilisation with A. terreus most often requires expensive pretreatment. Ustilaginacea are robust alternatives for itaconic acid production, evading the challenges, including the pretreatment of crude feedstocks regarding reduction of manganese concentration, that A. terreus poses. RESULTS: In this study, five different Ustilago strains were screened for their growth and production of itaconic acid on defined media. The most promising strains were then used to find a suitable alternative feedstock, based on the local food industry. U. cynodontis ITA Max pH, a highly engineered production strain, was selected to determine the biologically available nitrogen concentration in thick juice and molasses. Based on these findings, thick juice was chosen as feedstock to ensure the necessary nitrogen limitation for itaconic acid production. U. cynodontis ITA Max pH was further characterised regarding osmotolerance and product inhibition and a successful scale-up to a 2 L stirred tank reactor was accomplished. A titer of 106.4 gitaconic acid/L with a theoretical yield of 0.50 gitaconic acid/gsucrose and a space-time yield of 0.72 gitaconic acid/L/h was reached. CONCLUSIONS: This study demonstrates the utilisation of alternative feedstocks to produce ITA with Ustilaginaceae, without drawbacks in either titer or yield, compared to glucose fermentations.


Asunto(s)
Glucosa , Manganeso , Fermentación , Nitrógeno
5.
Neural Netw ; 166: 704-721, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37604079

RESUMEN

Computed tomography (CT) and magnetic resonance imaging (MRI) are two widely used clinical imaging modalities for non-invasive diagnosis. However, both of these modalities come with certain problems. CT uses harmful ionising radiation, and MRI suffers from slow acquisition speed. Both problems can be tackled by undersampling, such as sparse sampling. However, such undersampled data leads to lower resolution and introduces artefacts. Several techniques, including deep learning based methods, have been proposed to reconstruct such data. However, the undersampled reconstruction problem for these two modalities was always considered as two different problems and tackled separately by different research works. This paper proposes a unified solution for both sparse CT and undersampled radial MRI reconstruction, achieved by applying Fourier transform-based pre-processing on the radial MRI and then finally reconstructing both modalities using sinogram upsampling combined with filtered back-projection. The Primal-Dual network is a deep learning based method for reconstructing sparsely-sampled CT data. This paper introduces Primal-Dual UNet, which improves the Primal-Dual network in terms of accuracy and reconstruction speed. The proposed method resulted in an average SSIM of 0.932±0.021 while performing sparse CT reconstruction for fan-beam geometry with a sparsity level of 16, achieving a statistically significant improvement over the previous model, which resulted in 0.919±0.016. Furthermore, the proposed model resulted in 0.903±0.019 and 0.957±0.023 average SSIM while reconstructing undersampled brain and abdominal MRI data with an acceleration factor of 16, respectively - statistically significant improvements over the original model, which resulted in 0.867±0.025 and 0.949±0.025. Finally, this paper shows that the proposed network not only improves the overall image quality, but also improves the image quality for the regions-of-interest: liver, kidneys, and spleen; as well as generalises better than the baselines in presence the of a needle.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X , Artefactos , Encéfalo/diagnóstico por imagen
6.
Bioengineering (Basel) ; 10(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37370654

RESUMEN

Bio-based bulk chemicals such as carboxylic acids continue to struggle to compete with their fossil counterparts on an economic basis. One possibility to improve the economic feasibility is the use of crude substrates in biorefineries. However, impurities in these substrates pose challenges in fermentation and purification, requiring interdisciplinary research. This work demonstrates a holistic approach to biorefinery process development, using itaconic acid production on thick juice based on sugar beets with Ustilago sp. as an example. A conceptual process design with data from artificially prepared solutions and literature data from fermentation on glucose guides the simultaneous development of the upstream and downstream processes up to a 100 L scale. Techno-economic analysis reveals substrate consumption as the main constituent of production costs and therefore, the product yield is the driver of process economics. Aligning pH-adjusting agents in the fermentation and the downstream process is a central lever for product recovery. Experiments show that fermentation can be transferred from glucose to thick juice by changing the feeding profile. In downstream processing, an additional decolorization step is necessary to remove impurities accompanying the crude substrate. Moreover, we observe an increased use of pH-adjusting agents compared to process simulations.

7.
Metab Eng ; 75: 205-216, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581064

RESUMEN

In recent years branched short-chain dicarboxylates (BSCD) such as itaconic acid gained increasing interest in both medicine and biotechnology. Their use as building blocks for plastics urges for developing microbial upcycling strategies to provide sustainable end-of-life solutions. Furthermore, many BSCD exhibit anti-bacterial properties or exert immunomodulatory effects in macrophages, indicating a medical relevance for this group of molecules. For both of these applications, a detailed understanding of the microbial metabolism of these compounds is essential. In this study, the metabolic pathway of BSCD degradation from Pseudomonas aeruginosa PAO1 was studied in detail by heterologously transferring it to Pseudomonas putida. Heterologous expression of the PA0878-0886 itaconate metabolism gene cluster enabled P. putida KT2440 to metabolize itaconate, (S)- and (R)-methylsuccinate, (S)-citramalate, and mesaconate. The functions of the so far uncharacterized genes PA0879 and PA0881 were revealed and proven to extend the substrate range of the core degradation pathway. Furthermore, the uncharacterized gene PA0880 was discovered to encode a 2-hydroxyparaconate (2-HP) lactonase that catalyzes the cleavage of the itaconate derivative 2-HP to itatartarate. Interestingly, 2-HP was found to inhibit growth of the engineered P. putida on itaconate. All in all, this study extends the substrate range of P. putida to include BSCD for bio-upcycling of high-performance polymers, and also identifies 2-HP as promising candidate for anti-microbial applications.


Asunto(s)
Pseudomonas putida , Pseudomonas , Redes y Vías Metabólicas , Pseudomonas/genética , Pseudomonas aeruginosa/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácidos Carboxílicos/metabolismo
8.
Leukemia ; 36(7): 1843-1849, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654819

RESUMEN

Mutations of the JAK2 gene are frequent aberrations in the aging hematopoietic system and in myeloid neoplasms. While JAK-inhibitors efficiently reduce hyperinflammation induced by the constitutively active mutated JAK2 kinase, the malignant clone and abundance of mutated cells remains rather unaffected. Here, we sought to assess for genetic vulnerabilities of JAK2-mutated clones. We identified lysine-specific demethylase KDM4C as a selective genetic dependency that persists upon JAK-inhibitor treatment. Genetic inactivation of KDM4C in human and murine JAK2-mutated cells resulted in loss of cell competition and reduced proliferation. These findings led to reduced disease penetrance and improved survival in xenograft models of human JAK2-mutated cells. KDM4C deleted cells showed alterations in target histone residue methylation and target gene expression, resulting in induction of cellular senescence. In summary, these data establish KDM4C as a specific dependency and therapeutic target in JAK2-mutated cells that is essential for oncogenic signaling and prevents induction of senescence.


Asunto(s)
Histona Demetilasas , Neoplasias , Animales , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metilación , Ratones , Neoplasias/genética , Transducción de Señal
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3217-3220, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34891926

RESUMEN

Pulmonary cancer is one of the most commonly diagnosed and fatal cancers and is often diagnosed by incidental findings on computed tomography. Automated pulmonary nodule detection is an essential part of computer-aided diagnosis, which is still facing great challenges and difficulties to quickly and accurately locate the exact nodules' positions. This paper proposes a dual skip connection upsampling strategy based on Dual Path network in a U-Net structure generating multiscale feature maps, which aims to minimize the ratio of false positives and maximize the sensitivity for lesion detection of nodules. The results show that our new upsampling strategy improves the performance by having 85.3% sensitivity at 4 FROC per image compared to 84.2% for the regular upsampling strategy or 81.2% for VGG16-based Faster-R-CNN.


Asunto(s)
Neoplasias Pulmonares , Redes Neurales de la Computación , Diagnóstico por Computador , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Rayos X
10.
Int J Comput Assist Radiol Surg ; 16(12): 2129-2135, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34797512

RESUMEN

PURPOSE: Development and performance measurement of a fully automated pipeline that localizes and segments the locus coeruleus in so-called neuromelanin-sensitive magnetic resonance imaging data for the derivation of quantitative biomarkers of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. METHODS: We propose a pipeline composed of several 3D-Unet-based convolutional neural networks for iterative multi-scale localization and multi-rater segmentation and non-deep learning-based components for automated biomarker extraction. We trained on the healthy aging cohort and did not carry out any adaption or fine-tuning prior to the application to Parkinson's disease subjects. RESULTS: The localization and segmentation pipeline demonstrated sufficient performance as measured by Euclidean distance (on average around 1.3mm on healthy aging subjects and 2.2mm in Parkinson's disease subjects) and Dice similarity coefficient (overall around [Formula: see text] on healthy aging subjects and [Formula: see text] for subjects with Parkinson's disease) as well as promising agreement with respect to contrast ratios in terms of intraclass correlation coefficient of [Formula: see text] for healthy aging subjects compared to a manual segmentation procedure. Lower values ([Formula: see text]) for Parkinson's disease subjects indicate the need for further investigation and tests before the application to clinical samples. CONCLUSION: These promising results suggest the usability of the proposed algorithm for data of healthy aging subjects and pave the way for further investigations using this approach on different clinical datasets to validate its practical usability more conclusively.


Asunto(s)
Aprendizaje Profundo , Enfermedad de Parkinson , Humanos , Procesamiento de Imagen Asistido por Computador , Locus Coeruleus , Imagen por Resonancia Magnética , Melaninas , Enfermedad de Parkinson/diagnóstico por imagen
11.
Cancers (Basel) ; 13(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557090

RESUMEN

Senescence is a cellular state that is involved in aging-associated diseases but may also prohibit the development of pre-cancerous lesions and tumor growth. Senescent cells are actively secreting chemo- and cytokines, and this senescence-associated secretory phenotype (SASP) can contribute to both early anti-tumorigenic and long-term pro-tumorigenic effects. Recently, complex mechanisms of cellular senescence and their influence on cellular processes have been defined in more detail and, therefore, facilitate translational development of targeted therapies. In this review, we aim to discuss major molecular pathways involved in cellular senescence and potential therapeutic strategies, with a specific focus on myeloid malignancies.

12.
Med Image Anal ; 69: 101950, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421920

RESUMEN

Segmentation of abdominal organs has been a comprehensive, yet unresolved, research field for many years. In the last decade, intensive developments in deep learning (DL) introduced new state-of-the-art segmentation systems. Despite outperforming the overall accuracy of existing systems, the effects of DL model properties and parameters on the performance are hard to interpret. This makes comparative analysis a necessary tool towards interpretable studies and systems. Moreover, the performance of DL for emerging learning approaches such as cross-modality and multi-modal semantic segmentation tasks has been rarely discussed. In order to expand the knowledge on these topics, the CHAOS - Combined (CT-MR) Healthy Abdominal Organ Segmentation challenge was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI), 2019, in Venice, Italy. Abdominal organ segmentation from routine acquisitions plays an important role in several clinical applications, such as pre-surgical planning or morphological and volumetric follow-ups for various diseases. These applications require a certain level of performance on a diverse set of metrics such as maximum symmetric surface distance (MSSD) to determine surgical error-margin or overlap errors for tracking size and shape differences. Previous abdomen related challenges are mainly focused on tumor/lesion detection and/or classification with a single modality. Conversely, CHAOS provides both abdominal CT and MR data from healthy subjects for single and multiple abdominal organ segmentation. Five different but complementary tasks were designed to analyze the capabilities of participating approaches from multiple perspectives. The results were investigated thoroughly, compared with manual annotations and interactive methods. The analysis shows that the performance of DL models for single modality (CT / MR) can show reliable volumetric analysis performance (DICE: 0.98 ± 0.00 / 0.95 ± 0.01), but the best MSSD performance remains limited (21.89 ± 13.94 / 20.85 ± 10.63 mm). The performances of participating models decrease dramatically for cross-modality tasks both for the liver (DICE: 0.88 ± 0.15 MSSD: 36.33 ± 21.97 mm). Despite contrary examples on different applications, multi-tasking DL models designed to segment all organs are observed to perform worse compared to organ-specific ones (performance drop around 5%). Nevertheless, some of the successful models show better performance with their multi-organ versions. We conclude that the exploration of those pros and cons in both single vs multi-organ and cross-modality segmentations is poised to have an impact on further research for developing effective algorithms that would support real-world clinical applications. Finally, having more than 1500 participants and receiving more than 550 submissions, another important contribution of this study is the analysis on shortcomings of challenge organizations such as the effects of multiple submissions and peeking phenomenon.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Abdomen/diagnóstico por imagen , Humanos , Hígado
13.
Mol Ther Oncolytics ; 18: 372-381, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32913887

RESUMEN

In chronic myelogenous leukemia (CML), treatment with tyrosine kinase inhibitors (TKI) is unable to eradicate leukemic stem cells (LSC). Polymethine dye-functionalized nanoparticles can be internalized by specific cell types using transmembrane carrier proteins. In this study we investigated the uptake behavior of various polymethine dyes on leukemia cell lines and searched for carrier proteins that guide dye transport using RNA interference. The results show that the uptake of DY-635 is dependent on organic anion transport protein 1B3 (OATP1B3) in CML cells and immature myeloid precursor cells of CML patients. In contrast to nonspecific poly(lactide-co-glycolic acid) (PLGA) nanoparticle constructs, DY-635-functionalization of nanoparticles led to an uptake in CML cells. Investigation of these nanoparticles on bone marrow of CML patients showed a preferred uptake in LSC. The transcription of OATP1B3 is known to be induced under hypoxic conditions via the hypoxia-inducing factor 1 alpha (HIF1α), thus also in the stem cells niche. Since these cells have the potential to repopulate the bone marrow after CML treatment discontinuation, eliminating them by means of drug-loaded DY-635-functionalized PLGA nanoparticles deployed as a selective delivery system to LSC is highly relevant to the ongoing search for curative treatment options for CML patients.

14.
Biotechnol Bioeng ; 117(12): 3986-4000, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32725887

RESUMEN

The Third Modeling Workshop focusing on bioprocess modeling was held in Kenilworth, NJ in May 2019. A summary of these Workshop proceedings is captured in this manuscript. Modeling is an active area of research within the biotechnology community, and there is a critical need to assess the current state and opportunities for continued investment to realize the full potential of models, including resource and time savings. Beyond individual presentations and topics of novel interest, a substantial portion of the Workshop was devoted toward group discussions of current states and future directions in modeling fields. All scales of modeling, from biophysical models at the molecular level and up through large scale facility and plant modeling, were considered in these discussions and are summarized in the manuscript. Model life cycle management from model development to implementation and sustainment are also considered for different stages of clinical development and commercial production. The manuscript provides a comprehensive overview of bioprocess modeling while suggesting an ideal future state with standardized approaches aligned across the industry.


Asunto(s)
Biotecnología , Simulación por Computador , Modelos Teóricos
18.
J Fungi (Basel) ; 7(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396473

RESUMEN

Ustilago maydis, a member of the Ustilaginaceae family, is a promising host for the production of several metabolites including itaconic acid. This dicarboxylate has great potential as a bio-based building block in the polymer industry, and is of special interest for pharmaceutical applications. Several itaconate overproducing Ustilago strains have been generated by metabolic and morphology engineering. This yielded stabilized unicellular morphology through fuz7 deletion, reduction of by-product formation through deletion of genes responsible for itaconate oxidation and (glyco)lipid production, and the overexpression of the regulator of the itaconate cluster ria1 and the mitochondrial tricarboxylate transporter encoded by mttA from Aspergillus terreus. In this study, itaconate production was further optimized by consolidating these different optimizations into one strain. The combined modifications resulted in itaconic acid production at theoretical maximal yield, which was achieved under biotechnologically relevant fed-batch fermentations with continuous feed.

19.
Nanoscale ; 10(48): 22908-22916, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30488928

RESUMEN

Two-dimensional molybdenum-disulfide (MoS2) catalysts can achieve high catalytic activity for the hydrogen evolution reaction upon appropriate modification of their surface. The intrinsic inertness of the compound's basal planes can be overcome by either increasing the number of catalytically active edge sites or by enhancing the activity of the basal planes via a controlled creation of sulfur vacancies. Here, we report a novel method of activating the MoS2 surface using swift heavy ion irradiation. The creation of nanometer-scale structures by an ion beam, in combination with the partial sulfur depletion of the basal planes, leads to a large increase of the number of low-coordinated Mo atoms, which can form bonds with adsorbing species. This results in a decreased onset potential for hydrogen evolution, as well as in a significant enhancement of the electrochemical current density by over 160% as compared to an identical but non-irradiated MoS2 surface.

20.
J Cancer Res Clin Oncol ; 143(12): 2511-2519, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28913558

RESUMEN

INTRODUCTION: SETBP1 mutations have been established as a diagnostic marker in myeloid malignancies and are associated with inferior survival. Since there is limited data on their clinical impact and stability during disease progression, we sought to investigate the relationship between SETBP1 mutations and disease evolution. METHODS: Bidirectional Sanger sequencing of the SETBP1 gene was performed for 442 unselected patients with World Health Organization (WHO) defined myeloid disorders. Follow-up analysis was performed on samples from 123/442 patients to investigate SETBP1 mutation dynamics. Targeted deep next-generation sequencing for a panel of 30 leukemia-associated genes was established to study SETBP1 cooperating mutations. RESULTS: 10/442 patients (2.3%) had SETBP1 hotspot mutations (MDS/MPN, n = 7, sAML, n = 3), whereas four patients (1%) had SETBP1 non-hotspot mutations (MPN, n = 1; MDS, n = 2; sAML, n = 1). The median overall survival for patients with SETBP1 hotspot mutations, SETBP1 non-hotspot mutations, and SETBP1 wild type was 14 (range 0-31), 50 (range 0-71), and 47 months (range 0-402), respectively. In Kaplan-Meier analysis, SETBP1 hotspot mutations were significantly associated with reduced overall survival compared to SETBP1 non-hotspot mutations and the SETBP1 wild type (p < 0.001). All 10 patients with SETBP1 hotspot mutations died from relapse or disease progression. Three of four patients with SETBP1 non-hotspot mutations are alive with stable disease. Cooperating CSF3R and TET2 mutations were most frequently observed in patients with SETBP1 hotspot mutations. CONCLUSIONS: Patients with SETBP1 hotspot mutations suffered from aggressive disease with rapid evolution and inferior overall survival. Patients with SETBP1 non-hotspot mutations had less aggressive disease and a more favorable prognosis. Diagnostic screens for SETBP1 hotspot mutations may help identifying this dismal patient group and treat them in multicenter clinical studies.


Asunto(s)
Proteínas Portadoras/genética , Mutación de Línea Germinal , Leucemia Mieloide/genética , Síndromes Mielodisplásicos/genética , Proteínas Nucleares/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA