RESUMEN
The rapid effects of estradiol on membrane receptors are in the focus of the estradiol research field, however, the molecular mechanisms of these non-classical estradiol actions are poorly understood. Since the lateral diffusion of membrane receptors is an important indicator of their function, a deeper understanding of the underlying mechanisms of non-classical estradiol actions can be achieved by investigating receptor dynamics. Diffusion coefficient is a crucial and widely used parameter to characterize the movement of receptors in the cell membrane. The aim of this study was to investigate the differences between maximum likelihood-based estimation (MLE) and mean square displacement (MSD) based calculation of diffusion coefficients. In this work we applied both MSD and MLE to calculate diffusion coefficients. Single particle trajectories were extracted from simulation as well as from α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor tracking in live estradiol-treated differentiated PC12 (dPC12) cells. The comparison of the obtained diffusion coefficients revealed the superiority of MLE over the generally used MSD analysis. Our results suggest the use of the MLE of diffusion coefficients because as it has a better performance, especially for large localization errors or slow receptor movements.
RESUMEN
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
RESUMEN
Neurotrophin receptors such as the tropomyosin receptor kinase A receptor (TrkA) and the low-affinity binding p75 neurotrophin receptor p75NTR play a critical role in neuronal survival and their functions are altered in Alzheimer's disease (AD). Changes in the dynamics of receptors on the plasma membrane are essential to receptor function. However, whether receptor dynamics are affected in different pathophysiological conditions is unexplored. Using live-cell single-molecule imaging, we examined the surface trafficking of TrkA and p75NTR molecules on live neurons that were derived from human-induced pluripotent stem cells (hiPSCs) of presenilin 1 (PSEN1) mutant familial AD (fAD) patients and non-demented control subjects. Our results show that the surface movement of TrkA and p75NTR and the activation of TrkA- and p75NTR-related phosphoinositide-3-kinase (PI3K)/serine/threonine-protein kinase (AKT) signaling pathways are altered in neurons that are derived from patients suffering from fAD compared to controls. These results provide evidence for altered surface movement of receptors in AD and highlight the importance of investigating receptor dynamics in disease conditions. Uncovering these mechanisms might enable novel therapies for AD.
Asunto(s)
Enfermedad de Alzheimer/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Presenilina-1/genética , Receptor trkA/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Adulto , Enfermedad de Alzheimer/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Neuronas/metabolismo , Células PC12 , Ratas , Transducción de Señal , Imagen Individual de MoléculaRESUMEN
Gonadal steroid 17ß-estradiol (E2) exerts rapid, non-genomic effects on neurons and strictly regulates learning and memory through altering glutamatergic neurotransmission and synaptic plasticity. However, its non-genomic effects on AMPARs are not well understood. Here, we analyzed the rapid effect of E2 on AMPARs using single-molecule tracking and super-resolution imaging techniques. We found that E2 rapidly decreased the surface movement of AMPAR via membrane G protein-coupled estrogen receptor 1 (GPER1) in neurites in a dose-dependent manner. The cortical actin network played a pivotal role in the GPER1 mediated effects of E2 on the surface mobility of AMPAR. E2 also decreased the surface movement of AMPAR both in synaptic and extrasynaptic regions on neurites and increased the synaptic dwell time of AMPARs. Our results provide evidence for understanding E2 action on neuronal plasticity and glutamatergic neurotransmission at the molecular level.
RESUMEN
Obesity and adipocyte malfunction are related to and arise as consequences of disturbances in signaling pathways. Tyrosine kinase substrate with four Src homology 3 domains (Tks4) is a scaffold protein that establishes a platform for signaling cascade molecules during podosome formation and epidermal growth factor receptor (EGFR) signaling. Several lines of evidence have also suggested that Tks4 has a role in adipocyte biology; however, its roles in the various types of adipocytes at the cellular level and in transcriptional regulation have not been studied. Therefore, we hypothesized that Tks4 functions as an organizing molecule in signaling networks that regulate adipocyte homeostasis. Our aims were to study the white and brown adipose depots of Tks4 knockout (KO) mice using immunohistology and western blotting and to analyze gene expression changes regulated by the white, brown, and beige adipocyte-related transcription factors via a PCR array. Based on morphological differences in the Tks4-KO adipocytes and increased uncoupling protein 1 (UCP1) expression in the white adipose tissue (WAT) of Tks4-KO mice, we concluded that the beigeing process was more robust in the WAT of Tks4-KO mice compared to the wild-type animals. Furthermore, in the Tks4-KO WAT, the expression profile of peroxisome proliferator-activated receptor gamma (PPARγ)-regulated adipogenesis-related genes was shifted in favor of the appearance of beige-like cells. These results suggest that Tks4 and its downstream signaling partners are novel regulators of adipocyte functions and PPARγ-directed white to beige adipose tissue conversion.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adipocitos Beige/metabolismo , Homeostasis , Proteínas Adaptadoras Transductoras de Señales/genética , Adipocitos Beige/citología , Adipocitos Blancos/citología , Adipocitos Blancos/metabolismo , Adipogénesis , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , PPAR gamma/genética , PPAR gamma/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismoRESUMEN
With thymic senescence the epithelial network shrinks to be replaced by adipose tissue. Transcription factor TBX-1 controls thymus organogenesis, however, the same TBX-1 has also been reported to orchestrate beige adipose tissue development. Given these different roles of TBX-1, we have assessed if thymic TBX-1 expression persists and demonstrates this dualism during adulthood. We have also checked whether thymic adipose involution could yield beige adipose tissue. We have used adult mouse and human thymus tissue from various ages to evaluate the kinetics of TBX-1 expression, as well as mouse (TEP1) and human (1889c) thymic epithelial cells (TECs) for our studies. Electron micrographs show multi-locular lipid deposits typical of beige adipose cells. Histology staining shows the accumulation of neutral lipid deposits. qPCR measurements show persistent and/or elevating levels of beige-specific and beige-indicative markers (TBX-1, EAR-2, UCP-1, PPAR-gamma). We have performed miRNome profiling using qPCR-based QuantStudio platform and amplification-free NanoString platform. We have observed characteristic alterations, including increased miR21 level (promoting adipose tissue development) and decreased miR34a level (bias toward beige adipose tissue differentiation). Finally, using the Seahorse metabolic platform we have recorded a metabolic profile (OCR/ECAR ratio) indicative of beige adipose tissue. In summary, our results support that thymic adipose tissue emerging with senescence is bona fide beige adipose tissue. Our data show how the borders blur between a key immune tissue (the thymus) and a key metabolic tissue (beige adipose tissue) with senescence. Our work contributes to the understanding of cross talk between the immune system and metabolism.
RESUMEN
During senescence, Wnt4 expression is down-regulated (unlike their Frizzled receptors), while PPARgamma expression increases in the thymus. Together, these changes allow for thymic degeneration to occur, observed as adipose involution. However, when restored, Wnt4 can efficiently counteract PPARgamma and prevent thymic senescence from developing. The Wnt-pathway activator miR27b has also been reported to inhibit PPARgamma. Our goal was to evaluate the Wnt4 and miR27b levels of Wnt4-transgenic thymic epithelial cell (TEC)-derived exosomes, show their regenerative potential against age-related thymic degeneration, and visualize their binding and distribution both in vitro and in vivo. First, transgenic exosomes were harvested from Wnt4 over-expressing TECs and analyzed by transmission electron microscopy. This unveiled exosomes ranging from 50 to 100 nm in size. Exosomal Wnt4 protein content was assayed by ELISA, while miR27b levels were measured by TaqMan qPCR, both showing elevated levels in transgenic exosomes relative to controls. Of note, kit-purified TEI (total exosome isolate) outperformed UC (ultracentrifugation)-purified exosomes in these parameters. In addition, a significant portion of exosomal Wnt4 proved to be displayed on exosomal surfaces. For functional studies, steroid (Dexamethasone or DX)-induced TECs were used as cellular aging models in which DX-triggered cellular aging was efficiently prevented by transgenic exosomes. Finally, DiI lipid-stained exosomes were applied on the mouse thymus sections and also iv-injected into mice, for in vitro binding and in vivo tracking, respectively. We have observed distinct staining patterns using DiI lipid-stained transgenic exosomes on sections of young and aging murine thymus samples. Moreover, in vivo injected DiI lipid-stained transgenic exosomes showed detectable homing to the thymus. Of note, Wnt4-transgenic exosome homing outperformed control (Wnt5a-transgenic) exosome homing. In summary, our findings indicate that exosomal Wnt4 and miR27b can efficiently counteract thymic adipose involution. Although extrapolation of mouse results to the human setting needs caution, our results appoint transgenic TEC exosomes as promising tools of immune rejuvenation and contribute to the characterization of the immune-modulatory effects of extracellular vesicles in the context of regenerative medicine.
Asunto(s)
Animales Modificados Genéticamente/genética , Exosomas/genética , Regeneración/genética , Regeneración/fisiología , Timo/fisiología , Células A549 , Animales , Línea Celular , Línea Celular Tumoral , Senescencia Celular/genética , Células Epiteliales/fisiología , Vesículas Extracelulares/genética , Humanos , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Medicina Regenerativa/métodos , Proteína Wnt4/genéticaRESUMEN
Contribution to Special Issue on Fast effects of steroids. Although rapid effects of steroid hormones on membrane receptors and intracellular signaling molecules have been extensively studied in neurons, we are only beginning to understand the molecular mechanisms behind these non-classical steroid actions. Single molecule tracking (SMT) studies on live cells demonstrated that surface trafficking of membrane receptors determines their ligand binding properties and downstream signaling events. Recent findings suggest that one of the underlying mechanisms of non-classical steroid actions is the alteration of receptor movements on the membrane surface. In order to highlight this novel aspect of steroid effects, we first address the types of receptor movements in the plasma membrane and the role of cortical actin dynamics in receptor movement. We then discuss how single molecules and the surface movements of receptors can be detected in live cells. Next, we review the fundamental processes, which determine the effect of steroids on the plasma membrane: steroid movement through the lipid bilayer and the role of steroid membrane receptors. Using glutamate and neurotrophin receptors (NTRs) as examples, we demonstrate the features of receptor dynamics in the membrane. In addition, we survey the available data of rapid steroid actions on membrane receptor trafficking: we discuss how glucocorticoids act on the surface diffusion of glutamate receptor molecules and how estradiol acts on NTRs and gamma-aminobutyric acid type A receptors (GABAARs) and their related signaling events as well as on cortical actin. Finally, we address the physiological relevance of rapid steroid action on membrane receptors dynamics.
Asunto(s)
Hormonas Esteroides Gonadales/farmacología , Neuronas/efectos de los fármacos , Receptores de Esteroides/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Estradiol/farmacología , Glucocorticoides/farmacología , Humanos , Neuronas/fisiología , Transducción de Señal/efectos de los fármacos , Factores de TiempoRESUMEN
OBJECTIVE: Despite the fact that glucocorticoids (GC) are important therapeutic tools, their effects on regulatory T cells (Treg) are not well defined. The aim of our work was to investigate how GCs influence in vivo the thymic (tTreg) and peripheral Treg (pTreg) differentiation, survival and cytokine production. METHODS: Tregs were detected with flow cytometry in lymphatic organs of 4-6 weeks old BALB/c mice after repeated (2-4days), high-dose in vivo GC treatment using CD4/CD25 cell surface and Foxp3/IL-10/TGFß/glucocorticoid receptor (GR) intracellular staining. Cytokine, Foxp3, and GR mRNA levels of sorted CD4+CD25high T cells were analyzed using RT-PCR. Foxp3 and GR localization in Treg cells was investigated with confocal microscopy. RESULTS: GC treatment of mice resulted in increased relative tTreg frequency in the thymus, which was due to decreased total thymocyte numbers with unchanged absolute tTreg cell count. In contrast the relative pTreg cell ratio in secondary lymphatic organs decreased or showed no changes after GC treatment, while the absolute number of pTregs decreased. Elevated intracellular IL-10+ and TGFß+ tTreg and pTreg ratios were measured in GC-treated animals, accompanied with elevated Foxp3 mRNA expression. In addition, GC treatment caused increased TGFß and IL-35 mRNA expression in CD4+CD25high+ splenic and elevated IL-10 mRNA level in thymic tTregs. GR expression of thymic tTreg cells was lower than in pTregs. GC treatment caused an opposite change in GR levels, elevating GR in tTregs but decreasing it in pTregs. We observed a nuclear localization of GR in both tTregs and pTregs, which showed high colocalization (â¼60%) with Foxp3 transcription factor. These data suggest an interaction of these two transcription factors with further increase due to GC treatment in splenic pTregs. CONCLUSION: Our data show selective survival of tTregs and elevated production of immunosuppressive cytokines by Treg cells after GC treatment, which may contribute to the immunosuppressive effects of GCs.
Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Glucocorticoides/uso terapéutico , Linfocitos T Reguladores/inmunología , Timo/inmunología , Animales , Circulación Sanguínea , Supervivencia Celular , Células Cultivadas , Factores de Transcripción Forkhead/genética , Terapia de Inmunosupresión , Interleucina-10/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Receptores de Glucocorticoides/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia ArribaRESUMEN
Thymic senescence contributes to increased incidence of infection, cancer and autoimmunity at senior ages. This process manifests as adipose involution. As with other adipose tissues, thymic adipose involution is also controlled by PPARgamma. This is supported by observations reporting that systemic PPARgamma activation accelerates thymic adipose involution. Therefore, we hypothesized that decreased PPARgamma activity could prevent thymic adipose involution, although it may trigger metabolic adverse effects. We have confirmed that both human and murine thymic sections show marked staining for PPARgamma at senior ages. We have also tested the thymic lobes of PPARgamma haplo-insufficient and null mice. Supporting our working hypothesis both adult PPARgamma haplo-insufficient and null mice show delayed thymic senescence by thymus histology, thymocyte mouse T-cell recombination excision circle qPCR and peripheral blood naive T-cell ratio by flow-cytometry. Delayed senescence showed dose-response with respect to PPARgamma deficiency. Functional immune parameters were also evaluated at senior ages in PPARgamma haplo-insufficient mice (null mice do not reach senior ages due to metabolic adverse affects). As expected, sustained and elevated T-cell production conferred oral tolerance and enhanced vaccination efficiency in senior PPARgamma haplo-insufficient, but not in senior wild-type littermates according to ELISA IgG measurements. Of note, humans also show increased oral intolerance issues and decreased protection by vaccines at senior ages. Moreover, PPARgamma haplo-insufficiency also exists in human known as a rare disease (FPLD3) causing metabolic adverse effects, similar to the mouse. When compared to age- and metabolic disorder-matched other patient samples (FPLD2 not affecting PPARgamma activity), FPLD3 patients showed increased human Trec (hTrec) values by qPCR (within healthy human range) suggesting delayed thymic senescence, in accordance with mouse results and supporting our working hypothesis. In summary, our experiments prove that systemic decrease of PPARgamma activity prevents thymic senescence, albeit with metabolic drawbacks. However, thymic tissue-specific PPARgamma antagonism would likely solve the issue.
RESUMEN
Sex differences exist in chronic pain pathologies, and gonadal estradiol (E2) alters the pain sensation. The nocisensor transient receptor potential vanilloid 1 (TRPV1) receptor plays a critical role in triggering pain. Here we examined the impact of E2 on the function of TRPV1 receptor in mice sensory neurons in vitro and in vivo. Both mechano- and thermonociceptive thresholds of the plantar surface of the paw of female mice were significantly lower in proestrus compared with the estrus phase. These thresholds were higher in ovariectomized (OVX) mice and significantly lower in sham-operated mice in proestrus compared with the sham-operated mice in estrus phase. This difference was absent in TRPV1 receptor-deficient mice. Furthermore, E2 potentiated the TRPV1 receptor activation-induced mechanical hyperalgesia in OVX mice. Long pretreatment (14 hours) with E2 induced a significant increase in TRPV1 receptor messenger RNA expression and abolished the capsaicin-induced TRPV1 receptor desensitization in primary sensory neurons. The short E2 incubation (10 minutes) also prevented the desensitization, which reverted after coadministration of E2 and the tropomyosin-related kinase A (TrkA) receptor inhibitor. Our study provides in vivo and in vitro evidence for E2-induced TRPV1 receptor upregulation and sensitization mediated by TrkAR via E2-induced genomic and nongenomic mechanisms. The sensitization and upregulation of TRPV1 receptor by E2 in sensory neurons may explain the greater pain sensitivity in female mice.
Asunto(s)
Estradiol/farmacología , Dolor/fisiopatología , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/fisiología , Animales , Capsaicina/farmacología , Células Cultivadas , Tolerancia a Medicamentos , Estro/fisiología , Femenino , Expresión Génica/efectos de los fármacos , Calor , Masculino , Mecanorreceptores/efectos de los fármacos , Mecanorreceptores/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nociceptores/efectos de los fármacos , Nociceptores/fisiología , Ovariectomía , Proestro/fisiología , ARN Mensajero/análisis , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/fisiología , Caracteres Sexuales , Canales Catiónicos TRPV/genética , Regulación hacia Arriba/efectos de los fármacosRESUMEN
The commitment steps of mesenchymal stromal cells (MSCs) to adipogenic and other lineages have been widely studied but not fully understood. Therefore, it is critical to understand which molecules contribute to the conversion of stem cells into differentiated cells. The scaffold protein Tks4 plays a role in podosome formation, EGFR signaling and ROS production. Dysfunction of Tks4 causes a hereditary disease called Frank-ter Haar syndrome with a variety of defects concerning certain mesenchymal tissues (bone, fat and cartilage) throughout embryogenic and postnatal development. In this study, we aimed to analyze how the mutation of Tks4 affects the differentiation potential of multipotent bone marrow MSCs (BM-MSCs). We generated a Tks4 knock-out mouse strain on C57Bl/6 background, and characterized BM-MSCs isolated from wild type and Tks4-/- mice to evaluate their differentiation. Tks4-/- BM-MSCs had reduced ability to differentiate into osteogenic and adipogenic lineages compared to wild type. Studying the expression profile of a panel of lipid-regulated genes during adipogenic induction revealed that the expression of adipogenic transcription factors, genes responsible for lipid droplet formation, sterol and fatty acid metabolism was delayed or reduced in Tks4-/- BM-MSCs. Taken together, these results establish a novel function for Tks4 in the regulation of MSC differentiation.
Asunto(s)
Adipogénesis , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Fosfoproteínas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Ratones , Ratones Noqueados , Osteocondrodisplasias/congénito , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Fosfoproteínas/genéticaRESUMEN
Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes and eleocytes) can be physically isolated with good sort efficiency and purity confirmed by downstream morphological and cytochemical applications. Immunocytochemical analysis using anti-EFCC monoclonal antibodies combined with phalloidin staining has revealed antigenically distinct, sorted subsets. Screening of lectin binding capacity indicated wheat germ agglutinin (WGA) as the strongest reactor to amoebocytes. This is further evidenced by WGA inhibition assays that suggest high abundance of N-acetyl-d-glucosamine in amoebocytes. Post-sort phagocytosis assays confirmed the functional differences between amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets.
Asunto(s)
Anticuerpos Monoclonales/metabolismo , Citometría de Flujo/métodos , Microscopía/métodos , Oligoquetos/inmunología , Fagocitos/inmunología , Animales , Separación Celular , Dispersión Dinámica de Luz , Glucosamina/metabolismo , Inmunohistoquímica , Inmunofenotipificación , Lectinas/metabolismoRESUMEN
Spontaneous or induced malignant lymphomas in mice are valuable tools for studying human lymphoproliferative diseases, including the mechanism of migration between peripheral lymphoid organs and positioning within distinct tissue compartments. Here we report the isolation and characterization of a novel spontaneous lymphoma from BALB/c mice showing restricted tissue distribution and metastasis. The lymphoma cells display CD19, B220, MHC II, surface IgG2a/kappa chain with VH7183 rearrangement of the IgH gene, indicating their B-cell origin. Serial intraperitoneal injection of primary tumor into both BALB/c and RAG-1-deficient hosts led to the successful propagation of lymphoma. Despite the cytological characteristics of high-grade follicular B-cell lymphoma, the tumor cells (denoted as Bc-DLFL.1) showed significantly lesser spreading to extraabdominal locations upon intraperitoneal passage compared to splenic and mesenteric lymph node expansion. In mesenteric lymph nodes the high endothelial venules contained only few tumor cells, while the lymphatic vessels were almost completely filled with lymphoma cells. Similarly, the LYVE-1-positive lymphatic capillaries within the mesentery were packed with lymphoma cells. These findings suggest that Bc-DLFL.1 cells likely propagate primarily via the lymphatic circulation within the mesentery, therefore this tumor may offer an in vivo model to investigate the tumor cell migration via the lymphatic circulation from the peritoneal cavity.
Asunto(s)
Endotelio Vascular/patología , Vasos Linfáticos/patología , Linfoma de Células B/patología , Linfoma Folicular/patología , Mesenterio/patología , Animales , Endotelio Vascular/metabolismo , Citometría de Flujo , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Humanos , Metástasis Linfática , Vasos Linfáticos/metabolismo , Linfoma de Células B/genética , Linfoma Folicular/genética , Mesenterio/metabolismo , Ratones , Ratones Endogámicos BALB C , Clasificación del Tumor , Células Tumorales CultivadasRESUMEN
In the aging lung, the lung capacity decreases even in the absence of diseases. The progenitor cells of the distal lung, the alveolar type II cells (ATII), are essential for the repair of the gas-exchange surface. Surfactant protein production and survival of ATII cells are supported by lipofibroblasts that are peroxisome proliferator-activated receptor gamma (PPARγ)-dependent special cell type of the pulmonary tissue. PPARγ levels are directly regulated by Wnt molecules; therefore, changes in the Wnt microenvironment have close control over maintenance of the distal lung. The pulmonary aging process is associated with airspace enlargement, decrease in the distal epithelial cell compartment and infiltration of inflammatory cells. qRT-PCR analysis of purified epithelial and nonepithelial cells revealed that lipofibroblast differentiation marker parathyroid hormone-related protein receptor (PTHrPR) and PPARγ are reduced and that PPARγ reduction is regulated by Wnt4 via a ß-catenin-dependent mechanism. Using a human in vitro 3D lung tissue model, a link was established between increased PPARγ and pro-surfactant protein C (pro-SPC) expression in pulmonary epithelial cells. In the senile lung, both Wnt4 and Wnt5a levels increase and both Wnt-s increase myofibroblast-like differentiation. Alteration of the Wnt microenvironment plays a significant role in pulmonary aging. Diminished lipo- and increased myofibroblast-like differentiation are directly regulated by specific Wnt-s, which process also controls surfactant production and pulmonary repair mechanisms.